# Family Floer mirror space for local SYZ singularities 

arXiv: 2206.04652

Northwestern University - Hang Yuan

Goal: study SYZ singularities by family Floer

Consider a Lagrangian fibration with singularities

$$
\pi: X \rightarrow B
$$

on a Kähler manifold $(X, \omega)$. Denote its smooth part by

$$
\pi_{0}: X_{0} \rightarrow B_{0}
$$

But, we must place $\pi_{0}$ in $X$ not just in $X_{0}$, because the holomorphic disks we consider are all sweeping in $X$

Slogan: the dual singular fibration has an elementary formula
Semipositive: The Maslov indices $\geq 0$ (sufficient conditions: special / graded Lagrangians)

Weak Unobstructedness: for simplicity, consider a sufficient condition: the $\pi$-fibers are preserved by an anti-symplectic involution $\varphi$

- e.g. complex conjugate $z_{i} \mapsto \bar{z}_{i}$ for Gross's Lagrangian fibration
- Then, due to the work of Solomon, the Maslov-0 terms in the MaurerCartan equations will be cancelled pairwise : $\beta \leftrightarrow-\varphi_{*} \beta$ in $\pi_{2}(X, L)$
- This never means Maslov-0 counts vanish. They still contribute to both the wall-crossing and the homological perturbations of $A_{\infty}$ algebras.

For the singular Lagrangian fibers, we study two different types of holomorphic disks


Type (I)
(I) Disks emanating from various singular fibers but
eventually bounded by a smooth fiber
(II) Disks bounded by a singular fiber

Alternatively, the disks meet the singular fibers at interior vs boundary

- We must deal with them in two different ways, respectively emphasizing
- the Floer aspect for (I) (Left figure: Done in my thesis)
- the NA analytic / topological aspect for (II)
 (Right figure: discuss today)

Let's first briefly review the mirror construction in my thesis

## Theorem (Y.)

We can associate to $\left(X, \pi_{0}\right)$ a triple $\left(X_{0}^{\vee}, \pi_{0}^{\vee}, W_{0}^{\vee}\right)$ consisting of
(a) a $\Lambda$-analytic space $X_{0}^{\vee}$
(b) an affinoid torus fibration $\pi_{0}^{\vee}: X_{0}^{\vee} \rightarrow B_{0}$
(c) a global function $W_{0}^{\vee}$
unique up to isomorphism of analytic spaces
$\Lambda=\mathbb{C}\left(\left(T^{\mathbb{R}}\right)\right)$ - Novikov field - NA valuation v or norm $|z|=e^{-\mathrm{v}(z)}$
We also set $\Lambda_{0}=\{|z| \leq 1\}, \quad \Lambda_{+}=\{|z|<1\}$
$U_{\Lambda}=\{|z|=1\}$, Novikov unitary group, similar to $U(1) \cong S^{1}$

- Set-theoretically, the mirror space is not very interesting:

$$
X_{0}^{\vee}=\bigcup_{q \in B_{0}} H^{1}\left(L_{q} ; U_{\Lambda}\right)
$$

- Then, a main point in my thesis is that on this set, we can further give an analytic space structure by considering the Maslov-0 disks.
- This analytic topology on $X_{0}^{\vee}$ already contains (partial) information of singularities. These disks usually meet the singular fibers.


## Affinoid torus fibration:

It is simply a continuous map with respect to analytic topology and the manifold topology on $B_{0}$, and it is locally modeled on the tropicalization map

$$
\mathfrak{t r o p}:\left(\Lambda^{*}\right)^{n} \rightarrow \mathbb{R}^{n} \quad y_{i} \mapsto \mathrm{v}\left(y_{i}\right)
$$

I think it is first introduced by Kontsevich-Soibelman. It is further studied and is given this name by Nicaise-Xu-Yu. Here 'continuous' is really a strong condition, since we use the analytic topology.

- A brief picture of the mirror is as follows:
- In $B_{0}$, let $\chi:\left(U, q_{0}\right) \rightarrow(V, c) \subset \mathbb{R}^{n}$ be a (pointed) integral affine chart. We allow $q_{0} \notin U$. Then, we have an affinoid

- Given two such affinoid tropical charts for $i=1,2$

$$
\tau_{i}:\left(\pi_{0}^{\vee}\right)^{-1}(U) \rightarrow \operatorname{trop}^{-1}\left(V_{i}-c_{i}\right)
$$

There is a transition map (or say a gluing map)

$$
\Phi: \operatorname{trop}^{-1}\left(V_{1}-c_{1}\right) \rightarrow \operatorname{trop}^{-1}\left(V_{2}-c_{2}\right)
$$

between the two analytic open domains in $\left(\Lambda^{*}\right)^{n}$. It is decided by some $A_{\infty}$ homomorphism associated to an isotopy from $L_{q_{1}}$ to $L_{q_{2}}$ (roughly). But, $\Phi$ is the same for any $A_{\infty}$ homomorphism obtained in this way. This is carefully proved in my thesis.

## Theorem (Y.)

We can associate to $\left(X, \pi_{0}\right)$ a triple $\left(X_{0}^{\vee}, \pi_{0}^{\vee}, W_{0}^{\vee}\right)$ consisting of
(a) a $\Lambda$-analytic space $X_{0}^{\vee}$
(b) an affinoid torus fibration $\pi_{0}^{\vee}: X_{0}^{\vee} \rightarrow B_{0}$
(c) a global function $W_{0}^{\vee}$ unique up to isomorphism of analytic spaces

- We aim to develop an analytic extension $\pi^{\vee}$ over $B$ (rather that just $B_{0}$ )
- All possible (analytic) continuous extension may be too much.
- We add extra conditions to control the extension.
- Based on our computations for the Gross's special Lagrangian fibration, we propose to use:


## tropically continuous maps:

in the sense of Chambert-Loir and Ducros. See Section (3.1.6) of their famous paper in which they develop ( $p, q$ )-forms on analytic space:
Formes différentielles réelles et courants sur les espaces de Berkovich

- Under this condition, the topological extension from $B_{0}$ to $B$ can somehow control the analytic extension from $\pi_{0}^{\vee}$ to some potential extension.
- I'm inspired by Gross's Topological Mirror Symmetry to think like this. Also, I'm inspired by Kontsevich-Soibelman's singular model in
('Affine structures and non-archimedean analytic spaces', Section 8)


## Affinoid torus fibration:

It is simply a continuous map with respect to analytic topology and the manifold topology on $B_{0}$, and it is locally modeled on the tropicalization map

$$
\operatorname{trop}:\left(\Lambda^{*}\right)^{n} \rightarrow \mathbb{R}^{n} \quad y_{i} \mapsto \vee\left(y_{i}\right)
$$

I think it is first introduced by Kontsevich-Soibelman. It is further studied and is given this name by Nicaise-Xu-Yu. Here 'continuous' is really a strong condition, since we use the analytic topology.

- Roughly speaking, a tropically continuous map $F$ is locally in the following form:

$$
\left.F\right|_{\mathscr{U}}=\varphi\left(v\left(f_{1}\right), \ldots, v\left(f_{n}\right)\right)
$$

- $\mathscr{U}$ is an analytic open subset
- $f_{1}, \ldots, f_{n}: \mathscr{U} \rightarrow \Lambda^{*}$ are invertible analytic functions.
(e.g. local coordinates for analytification of an algebraic variety)
- $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is just a continuous map for Euclidean topology
- Let's give a naive idea, we will be more specific soon.
- Very intuitively, imagine $\mathrm{v}\left(f_{1}\right), \ldots, \mathrm{v}\left(f_{n}\right)$ are 'action coordinates', so more or less correspond to symplectic areas.
- The symplectic areas, as functions on $B_{0}$, can usually extend to the singular locus. See the right side figure:
- Anyway, we will just focus on an example later.


## Why the conventional Maurer-Cartan idea is not enough

It's been long expected that the mirror space should be the union of the Maurer-Cartan sets (with singular fibers)


Over $B_{0}$, this roughly gives the correct picture. Indeed, the $\mathscr{M} \mathscr{C}\left(L_{q}\right)$ is very close to $H^{1}\left(L_{q} ; U_{\Lambda}\right)$ (slightly different) In short, the set-theoretic cocycle condition is essentially straightforward by the homotopy invariance of MaurerCartan sets.
(a property well-known for the classic homotopy theory of $A_{\infty}$ structures).

Over $B \backslash B_{0}$, the Maurer-Cartan picture fails unfortunately !
Maurer-Cartan set of a singular Lagrangian

$$
\subsetneq \text { ‘Dual singular fiber’ }
$$

Roughly, the 'dual singular fibers' here will extend $\pi_{0}^{\vee}$ tropically continuously. We will see this more clearly soon. Admittedly, the Maurer-Cartan picture may offer some good ideas, or inspirations, etc.
But unfortunately, it is eventually not the correct picture.

Nevertheless, for the analytic cocycle condition, we must introduce more powerful ideas and tools as in my thesis: (at least 4 points below)

1. Study a uniform version of Groman-Solomon's reverse isoperimetric inequalities for the non-archimedean convergence.
2. Establish a minimal model version of Fukaya's trick. With nontrivial Maslov-0 disks, this creates further difficulties. Why minimal model? Very roughly, want $H^{1}\left(L_{q} ; U_{\Lambda}\right)$ rather than $\Omega^{1}\left(L_{q} ; U_{\Lambda}\right)$.
3. Prove the transition maps are well-defined. Otherwise, what the cocycle conditions mean is very ambiguous. This requires the following ud-homotopy.
4. Upgrade the classic homotopy to the ud-homotopy for the $A_{\infty}$ structures. The point is, the analytic gluing needs stronger homotopy.

- For example, individual $A_{\infty}$ maps satisfy the divisor axiom are not enough. We want the homtopies between them also satisfy the divisor axiom in a very specific sense.
- This requires lots of difficult homological algebras, and finally we need to introduce the so-called category $\mathscr{U D}$ in my thesis.

In a word, the ud-homotopy theory enables us to upgrade the 'classic Maurer-Cartan idea' to a higher and more precise level, matching NA adic-convergent formal power series rather than just set bijections.

This is a totally different story, and is crucial for the analytic topology.

* By the way, the inclusion of Landau-Ginzburg superpotential will be also indispensable for our results later.


## Theorem: $Y$ is SYZ mirror to $X$

Let's go to a fundamental example which has been long predicted by Gross-Siebert program. Define

$$
X=\mathbb{C}^{n} \backslash\left\{z_{1} \cdots z_{n}=1\right\}
$$

(equipped with the standard symplectic form), and define

$$
Y=\left\{(x, y) \in \Lambda^{2} \times\left(\Lambda^{*}\right)^{n-1} \mid x_{0} x_{1}=1+y_{1}+\cdots+y_{n-1}\right\}
$$

Definition: We say an algebraic variety $Y$ over $\Lambda$ is SYZ mirror to a complex manifold $X$ over $\mathbb{C}$ if

- there exists a proper tropically continuous analytic fibration
$f: \mathscr{Y} \rightarrow B$ on a Zariski-dense analytic open domain $\mathscr{Y}$ in $Y$
- there exists a Lagrangian fibration $\pi: X \rightarrow B$ onto the same base manifold $B$ for some Kähler form $\omega$ on $X$
such that the following conditions hold

1) The $\pi$ (resp. $f$ ) restricts to a Lagrangian torus fibration $\pi_{0}$ (resp. an affinoid torus fibration $f_{0}$ ) over a common open subset $B_{0} \subset B$ such that the two induced integral affine structures agree with each other and $\Delta=B \backslash B_{0}$ is codimesion-2.
(same smooth/singular locus, integral affine str. It's already very nontrivial)
2) There is an isomorphism of affinoid torus fibration $\pi_{0}^{\vee} \cong f_{0}$. Here $\pi_{0}^{\vee}$ is the family Floer mirror fibration for $\pi_{0}$ (a sort of T-duality)
3) The set $\mathscr{Y}_{0}:=f_{0}^{-1}\left(B_{0}\right)$ is Zariski dense in $Y$
(possibly redundant, but useful for a folklore conjecture later)

- Kontsevich-Soibelman proved that any affinoid torus fibration also induces an integral affine structure on the base.
- The existence of affinoid torus fibration, parallel to that of Lagrangian fibration, should be also a nontrivial problem in NA geometry.
- In general, $\mathscr{Y}$ depends on $\omega$, and vice versa. This gives a picture of "Kähler moduli v.s. complex moduli": $(Y, \mathscr{Y})$ is SYZ mirror to $(X, \omega)$.
- For example, we can simply run the family Floer T-duality for the toric moment map. The analytic domain is $\mathscr{Y}=\mathscr{Y}_{0} \cong \operatorname{trop}^{-1}(P)$ in $\left(\Lambda^{*}\right)^{n}$ for the moment polytope $P=P_{\omega}$ relying on $\omega$. But, the Zariski-closure is the same algebraic variety $Y=\left(\Lambda^{*}\right)^{n}$ not relying on $\omega$.
- We focus only on SYZ now. Hopefully, we could achieve Abouzaid's family Floer functor to prove HMS in the future.

Remark if you allow me to remove the condition 2), still nontrivial to get 1), then

- Nothing about Floer/Fukaya theories
- Nothing about the moduli spaces of pseudo-holomorphic disks.
- It may be very unmotivated without some Floer-theoretic considerations.
- But, as we will see, the construction of $f$ on $Y$ itself is very elementary


Theorem: $Y=\left\{x_{0} x_{1}=1+y_{1}+\cdots+y_{n-1}\right\}$ is SYZ mirror to $X=\mathbb{C}^{n} \backslash\left\{z_{1} \cdots z_{n}=1\right\}$

- On the A-side, we consider a Gross's special Lagrangian fibration.

$$
\pi: X \rightarrow B \equiv \mathbb{R}^{n} \quad z \mapsto\left(\left|z_{1}\right|^{2}-\left|z_{n}\right|^{2}, \ldots,\left|z_{n-1}\right|^{2}-\left|z_{n}\right|^{2}, \log \left|z_{1} \cdots z_{n}-1\right|\right)
$$

- The singular locus $\Delta=B \backslash B_{0}$ is a tropical hypersurface in $\mathbb{R}^{n-1} \times\{0\}$ given by those $\bar{q}=\left(q_{1}, \ldots, q_{n-1}\right)$ so that $\min \left\{0, q_{1}, \ldots, q_{n-1}\right\}$ attains at least twice. (See the right figure when $n=3$ )
- Let $B_{0}:=B \backslash \Delta$. By the family Floe theory, there is an 'abstract' affinoid torus fibration

$$
\pi_{0}^{\vee}: X_{0}^{\vee} \rightarrow B_{0}
$$

on the 'abstract' set $X_{0}^{\vee} \equiv \bigcup_{q \in B_{0}} H^{1}\left(L_{q} ; U_{\Lambda}\right)$

- Our Zariski-dense analytic open domain $\mathscr{Y}$ in $Y=\left\{x_{0} x_{1}=1+y_{1}+\cdots+y_{n-1}\right\}$ is defined by setting the NA norm $\left|x_{1}\right|<1$. This is very explicit. We will explain why we choose it later.
(It is also fine to consider $\left|x_{1}\right|<R$ for other $R \neq 1$ or replace $x_{1}$ by $x_{0}$. Just a convention)

Now, our major task is to find both the constructions of (see the diagram)
(i) the analytic embedding $g: X_{0}^{\vee} \rightarrow \mathscr{Y}_{0}$ from the abstract to the concrete
(ii) the dual singular fibration $f: \mathscr{Y} \rightarrow B$ so that $f_{0} \cong \pi_{0}^{\vee}$ via the above $g$

(i) Construction of $g$ : First, study the wall-crossing of $\pi$ (use the family Floer theory), and we can finally show a simple identification:
(*) $\quad X_{0}^{\vee} \cong T_{+} \cup T_{-} / \sim$
$T_{ \pm}$are analytic open subdomains $\subsetneq\left(\Lambda^{*}\right)^{n}$ (wry the action coordinates for $\omega$ ) $T_{ \pm}$correspond to the Clifford and Chekanov tori respectively.
the gluing relation $\sim$ can be written down explicitly.
Under the identification (*), the analytic embedding $g$ is obtained by gluing

$$
\begin{array}{ll}
g_{+}: T_{+} \rightarrow Y & \left(y_{1}, \ldots, y_{n}\right) \mapsto\left(\frac{1}{y_{n}}, y_{n} h, y_{1}, \ldots, y_{n-1}\right) \\
g_{-}: T_{-} \rightarrow Y & \left(y_{1}, \ldots, y_{n}\right) \mapsto\left(\frac{h}{y_{n}}, y_{n}, y_{1}, \ldots, y_{n-1}\right)
\end{array}
$$

where $h=1+y_{1}+\cdots+y_{n-1}$
*The formula of $g$ is due to GHK and GS, but we further add NA picture (KS).
Anyway, the Novikov field is good for the T-duality idea : More intrinsically, $T_{ \pm} \subset \bigcup_{q \in B_{0}} H^{1}\left(L_{q} ; U_{\Lambda}\right)$ as sets, and

$$
\left(\Lambda^{*}\right)^{n} \ni\left(y_{1}, \ldots, y_{n}\right) \leftrightarrow\left(T^{\chi_{1}} \nabla\left(\sigma_{1}\right), \ldots, T^{\chi_{n}} \nabla\left(\sigma_{n}\right)\right) \leftrightarrow \nabla
$$

where $\nabla \in H^{1}\left(L_{q} ; U_{\Lambda}\right)$ and $\chi=\left(\chi_{1}, \ldots, \chi_{n}\right)$ is the action coordinates for a basis $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\} \subset \pi_{1}\left(L_{q}\right)$.
Remark: The only place we use Floer theory is the identification (*)

- In fact, all of $T_{ \pm}$, the gluing relation $\sim$, the embedding $g$ have nothing to do with the Floer theory or the moduli space business.
- If we're content with the main theorem without the T-duality condition $\pi_{0}^{\vee} \cong f_{0}$, then we can entirely exclude the Floer theory.
- Gross-Hacking-Keel ( see Lemma 3.1 in 'Birational Geometry of Cluster Algebras' )
- Kontsevich-Soibelman (see Page 44 in 'Affine structures and non-archimedean analytic spaces')
$T_{+} \cup T-/ \sim$
replace it. and no Floes
Because GHK is over $\mathbb{C}$, we discuss some ways of reduction from $\Lambda$ to $\mathbb{C}$ :
- If an analytic space over $\Lambda$ is the generic fiber of a formal scheme over $\Lambda_{0}$, then the special fiber is the so-called analytic reduction which is a variety over $\mathbb{C}$. (not unique) - $\left(\Lambda^{*}\right)^{n}$ 'contains' infinity copies of $\left(\mathbb{C}^{*}\right)^{n}$ c.f. exploded tropicalization map (Sam Payne). - Study the Maslov's dequantization. (Mikhalkin, Abouzaid-Ganatra-Iritani-Sheridan)

(ii) Construction of $f:$ This is very difficult! We obtain $f=j^{-1} \circ F$ by decomposing it into a topological embedding $j: B \equiv \mathbb{R}^{n} \rightarrow \mathbb{R}^{n+1}$ and an analytic tropically continuous map $F: Y \rightarrow \mathbb{R}^{n+1}$. (I will give a very beautiful picture for the image of $j$ )
This decomposition imitates Kontsevich-Soibelman's model, and I would like to thank Tony Yue Yu for his suggestion to KS's paper. Anyway, after a lot of trials, we find the following pair $(j, F)$ by hand, and it finally works !

$$
j(q)=\left(\theta_{0}(q), \theta_{1}(q), \bar{q}\right)
$$

$* q=\left(q_{1}, \ldots, q_{n-1}, q_{n}\right)=\left(\bar{q}, q_{n}\right)$ are in $B \equiv \mathbb{R}^{n}$
$* \theta_{0}(q)=\min \{-\psi(q),-\psi(\bar{q}, 0)\}+\min \{0, \bar{q}\}$

* $\theta_{1}(q)=\min \{\psi(q), \quad \psi(\bar{q}, 0)\}$
* $\psi: B \rightarrow \mathbb{R}_{+}$is the $\omega$-areas of holomorphic disks

$$
F=\left(F_{0}, F_{1}, G_{1}, \ldots, G_{n-1}\right)
$$

Given $z=\left(x_{0}, x_{1}, y_{1}, \ldots, y_{n-1}\right)$ in $Y$, we define
$* F_{0}(z)=\min \left\{\mathrm{v}\left(x_{0}\right),-\psi\left(\mathrm{v}\left(y_{1}\right), \ldots, \mathrm{v}\left(y_{n-1}\right), 0\right)+\min \left\{0, \mathrm{v}\left(y_{1}\right), \ldots, \mathrm{v}\left(y_{n-1}\right)\right\}\right\}$
$* F_{1}(z)=\min \left\{\mathrm{v}\left(x_{1}\right), \quad \psi\left(\mathrm{v}\left(y_{1}\right), \ldots, \mathrm{v}\left(y_{n-1}\right), 0\right)\right\}$
$* G_{k}(z)=\mathrm{v}\left(y_{k}\right) \quad 1 \leq k \leq n-1$
where v is the non-archimedean valuation and the $\psi$ is the same as above.
This depends on the Kähler form in general.
This includes 'singular' analytic fibers in the sense of Kontsevich-Soibelman.


The Zariski-dense analytic subdomain $\mathscr{Y}$ exactly satisfies that $j(B)=F(\mathscr{Y})$. Define

$$
f=j^{-1} \circ F \mid \mathscr{Y}
$$

It is explicit, elementary, and has singular fibers Although not obvious now, it will meet all the conditions for our definition of 'SYZ mirror' (e.g. match singular locus, integral affine str)

(ii) Construction of $f:$ This is very difficult! We obtain $f=j^{-1} \circ F$ by decomposing it into a topological embedding $j: B \equiv \mathbb{R}^{n} \rightarrow \mathbb{R}^{n+1}$ and an analytic tropically continuous map $F: Y \rightarrow \mathbb{R}^{n+1}$. (I will give a very beautiful picture for the image of $j$ ) This decomposition imitates Kontsevich-Soibelman's model, and I would like to thank Tony Yue Yu for his suggestion to KS's paper. Anyway, after a lot of trials, we find the following pair $(j, F)$ by hand, and it finally works !

$$
j(q)=\left(\theta_{0}(q), \theta_{1}(q), \bar{q}\right)
$$

* $q=\left(q_{1}, \ldots, q_{n-1}, q_{n}\right)=\left(\bar{q}, q_{n}\right)$ are in $B \equiv \mathbb{R}^{n}$
$* \theta_{0}(q)=\min \{-\psi(q),-\psi(\bar{q}, 0)\}+\min \{0, \bar{q}\}$
* $\theta_{1}(q)=\min \{\psi(q), \quad \psi(\bar{q}, 0)\}$
* $\psi: B \rightarrow \mathbb{R}_{+}$is the $\omega$-areas of holomorphic disks
- A prototype is found by KS many years ago in a very different context.
- KS use 3 charts, but we only use 2 charts $T_{ \pm}$which geometrically correspond to Clifford/Chekanov tori. We simplify it to 2 charts, exactly inspired by GHK's work.
- As we see, the formula of $f$ is very elementary itself (maybe still complicated)
- In fact, if we are content with the result without the T-duality condition $\pi_{0}^{\vee} \cong f_{0}$ there is even no need to know anything about Floer theory

$$
F=\left(F_{0}, F_{1}, G_{1}, \ldots, G_{n-1}\right)
$$

Given $z=\left(x_{0}, x_{1}, y_{1}, \ldots, y_{n-1}\right)$ in $Y$, we define
$* F_{0}(z)=\min \left\{\mathrm{v}\left(x_{0}\right),-\psi\left(\mathrm{v}\left(y_{1}\right), \ldots, \mathrm{v}\left(y_{n-1}\right), 0\right)+\min \left\{0, \mathrm{v}\left(y_{1}\right), \ldots, \mathrm{v}\left(y_{n-1}\right)\right\}\right\}$

* $F_{1}(z)=\min \left\{\mathrm{v}\left(x_{1}\right), \quad \psi\left(\mathrm{v}\left(y_{1}\right), \ldots, \mathrm{v}\left(y_{n-1}\right), 0\right)\right\}$
* $G_{k}(z)=\mathrm{v}\left(y_{k}\right) \quad 1 \leq k \leq n-1$
where v is the non-archimedean valuation and the $\psi$ is the same as above. This depends on the Kähler form in general.
This includes 'singular' analytic fibers in the sense of Kontsevich-Soibelman.


$B \longleftrightarrow B_{0}$



## Visualization for

$j: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n+1}$

$$
j(q)=\left(\theta_{0}(q), \theta_{1}(q), \bar{q}\right)
$$

In $\mathbb{R}^{2}$, consider a broken line $R_{\bar{q}}$ (in orange) with a corner point:

$$
A=\left(a_{0}(\bar{q}), a_{1}(\bar{q})\right):=(\min \{0, \bar{q}\}-\psi(\bar{q}, 0), \psi(\bar{q}, 0))
$$

Get a family of broken lines $R_{\bar{q}}$ parametrized by $A(\bar{q})$ or $\bar{q}$.


Now, the image $j(B)$ is simply the union of these broken lines:

$$
j(B)=\bigcup_{\bar{q} \in \mathbb{R}^{n-1}} R_{\bar{q}} \times\{\bar{q}\}
$$

The black curve is the trace of the point $A(\bar{q})$ and relies on $\omega$ in general. Also,

$$
j(\Delta)=\bigcup_{\bar{q} \in \Pi}\{(A(\bar{q}), \bar{q})\}
$$

where $\Pi=V(\min \{0, \bar{q}\})$. If $n=2$, only one singular point, the blue point below.




## Visualization for

$j: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n+1}$

$$
j(q)=\left(\theta_{0}(q), \theta_{1}(q), \bar{q}\right)
$$

In $\mathbb{R}^{2}$, consider a broken line $R_{\bar{q}}$ (in orange) with a corner point:

$$
A=\left(a_{0}(\bar{q}), a_{1}(\bar{q})\right):=(\min \{0, \bar{q}\}-\psi(\bar{q}, 0), \psi(\bar{q}, 0))
$$

Get a family of broken lines $R_{\bar{q}}$ parametrized by $A(\bar{q})$ or $\bar{q}$.

Now, the image $j(B)$ is simply the union of these broken lines:

$$
j(B)=\bigcup_{\bar{q} \in \mathbb{R}^{n-1}} R_{\bar{q}} \times\{\bar{q}\}
$$

The black curve is the trace of the point $A(\bar{q})$ and relies on $\omega$ in general. Also,

$$
j(\Delta)=\bigcup_{\bar{q} \in \Pi}\{(A(\bar{q}), \bar{q})\}
$$

$* q=\left(q_{1}, \ldots, q_{n-1}, q_{n}\right)=\left(\bar{q}, q_{n}\right)$ are in $B \equiv \mathbb{R}^{n}$
$* \theta_{0}(q)=\min \{-\psi(q),-\psi(\bar{q}, 0)\}+\min \{0, \bar{q}\}$

* $\theta_{1}(q)=\min \{\psi(q), \quad \psi(\bar{q}, 0)\}$
* $\psi: B \rightarrow \mathbb{R}_{+}$is the $\omega$-area of a holomorphic disk

Maybe very surprisingly, the $F=\left(F_{0}, F_{1}, G_{1}, \ldots, G_{n-1}\right)$ has
exactly the same image in $\mathbb{R}^{n+1}$, i.e. $j(B)=F(\mathscr{y})$
Given $z=\left(x_{0}, x_{1}, y_{1}, \ldots, y_{n-1}\right)$ in $Y$, we define
$* F_{0}(z)=\min \left\{v\left(x_{0}\right),-\psi\left(v\left(y_{1}\right), \ldots, v\left(y_{n-1}\right), 0\right)+\min \left\{0, \mathrm{v}\left(y_{1}\right), \ldots, \mathrm{v}\left(y_{n-1}\right)\right\}\right\}$

* $F_{1}(z)=\min \left\{\mathrm{v}\left(x_{1}\right), \quad \psi\left(\mathrm{v}\left(y_{1}\right), \ldots, \mathrm{v}\left(y_{n-1}\right), 0\right)\right\}$
$* G_{k}(z)=\mathrm{v}\left(y_{k}\right) \quad 1 \leq k \leq n-1$
where $v$ is the non-archimedean valuation and the $\psi$ is the same as above.
This depends on the Kähler form in general.
This includes 'singular' analytic fibers in the sense of Kontsevich-Soibelman.

* The motivation to find $(j, F)$ is difficult for me to explain. It is really found by hand.
* But, let me try to explain the idea: the key observation is

$$
\mathrm{v}\left(1+y_{1}+\cdots+y_{n-1}\right)=\min \left\{0, \mathrm{v}\left(y_{1}\right), \ldots, \mathrm{v}\left(y_{n-1}\right)\right\}
$$

whenever the minimum is attained only once.
But if the minimum is attained twice, it may happen that

$$
\mathrm{v}\left(1+y_{1}+\cdots+y_{n-1}\right)>\min \left\{0, \mathrm{v}\left(y_{1}\right), \ldots, \mathrm{v}\left(y_{n-1}\right)\right\}
$$

which gives some ambiguity.

* The pair $(j, F)$ is very carefully designed to 'eliminate' this ambiguity.
* This ambiguity also plays the crucial role to 'create' the singularity of the dual fibration $f$.

* Regardless of how we find the $(j, F)$ from the family Floer picture, it is really elementary to define them and check a key lemma as follows:

$$
j \circ \pi_{0}^{\vee}=F \circ g
$$

This implies the T-duality condition $\pi_{0}^{\vee} \cong f_{0}$

- The only place we need family Floer is the identification (not easy to get)

$$
\begin{equation*}
X_{0}^{\vee} \cong T_{+} \cup T_{-} / \sim \tag{*}
\end{equation*}
$$

- By (*), we can also directly define the affinoid torus fibration $\pi_{0}^{\vee}$ on the domains $T_{ \pm}$ regardless of any Floer-theoretic considerations.
- Except ( ${ }^{*}$ ), all of $T_{ \pm}, \sim, j, F, \mathscr{Y}, f, g$ can be defined directly in the pure NA world.



Type (I)
follows family Floer theory and T-duality We put an analytic topology on

$$
X_{0}^{\vee} \equiv \bigcup_{q \in B_{0}} H^{1}\left(L_{q} ; U_{\Lambda}\right)
$$

and the wall-crossing of Maslov-0 disks (type (I)) can imply the identification

$$
X_{0}^{\vee} \equiv T_{+} \sqcup T_{-} / \sim
$$

follows Gross-Hacking-Keel-Siebert's principle based on the identification
agrees with many previous results like Auroux, Abouzaid-AurouxKatzarkov, Abouzaid-Sylvan, Gammage, Gross-Siebert, etc.


Type (II)
follows Kontsevich-Soibelman further uses type-II disks for singular fibers

- Given the above, our very explicit T-duality picture is compatible with so many previous mirror symmetry results. Thus, it is very reasonable to believe the analytic fibers of $f$ over $\Delta=B \backslash B_{0}$ should be the correct dual singular fibers
- Meanwhile, by the original family Floer picture, we should expect that $f^{-1}(q)$ is the Maurer-Cartan set $\mathscr{M} \mathscr{C}\left(L_{q}\right)$ for $q \in \Delta$
- But unfortunately, the two approaches only have some partial agreements.
- The Maurer-Cartan set is only a strict subset of the corresponding dual singular $f$-fiber.


## Dual singular fiber is not a Maurer-Cartan set !

For simplicity, we assume $n=2$. Then $B=\mathbb{R}^{2}, \Delta=\{0\}$. Recall $X=\mathbb{C}^{2} \backslash\left\{z_{1} z_{2}=1\right\}, Y=\left\{x_{0} x_{1}=1+y\right.$ in $\left.\Lambda^{2} \times \Lambda^{*}\right\}$
We have a pinched sphere Lagrangian $L_{0}$ as the fiber over the singular point 0
Then, the dual singular fiber is (recall that $f$ has an explicit formula)

$$
\begin{aligned}
S:=f^{-1}(0) & =\left\{\left(x_{0}, x_{1}, y\right) \in Y \mid \mathrm{v}\left(x_{0}\right) \geq-\psi(0), \mathrm{v}\left(x_{1}\right) \geq \psi(0), \mathrm{v}(y)=0\right\} \\
& \cong\left\{\left(x_{0}, x_{1}, y\right) \in Y \mid \mathrm{v}\left(x_{0}\right) \geq 0, \mathrm{v}\left(x_{1}\right) \geq 0, \mathrm{v}(y)=0\right\} \quad x_{0} \mapsto T^{-\psi(0)} x_{0}, x_{1} \mapsto T^{\psi(0)} x_{1}
\end{aligned}
$$

1) If $1+y \in \Lambda_{+}$then $v\left(x_{0}\right)+v\left(x_{1}\right)=v(1+y)>0$, so $\left(x_{0}, x_{1}\right) \in \Lambda_{0} \times \Lambda_{+} \cup \Lambda_{+} \times \Lambda_{0}$ vice versa.

2) If $1+y \notin \Lambda_{+}$then $\mathrm{v}\left(x_{0}\right)=\mathrm{v}\left(x_{1}\right)=0$, so $\left(x_{0}, x_{1}\right)$ is a pair in $U_{\Lambda}^{2}$ such that $\bar{x}_{0} \bar{x}_{1}-1 \neq 0$

In other words, we conclude that

$$
S=S_{1} \sqcup S_{2}
$$

where

$$
\begin{aligned}
& S_{1}=\Lambda_{0} \times \Lambda_{+} \cup \Lambda_{+} \times \Lambda_{0} \\
& S_{2}=\left\{\left(x_{0}, x_{1}\right) \in U_{\Lambda}^{2} \mid \bar{x}_{0} \bar{x}_{1} \neq 1\right\} \cong U_{\Lambda} \times\left(\mathbb{C}^{*} \backslash\{-1\} \oplus \Lambda_{+}\right)
\end{aligned}
$$

On the other hand, Hong, Kim, and Lau have proved that the Maurer-Cartan set for the singular Lagrangian $L_{0}$ is exactly given by

$$
\mathscr{M} \mathscr{C}\left(L_{0}\right) \cong S_{1} \subsetneq S
$$

- Therefore, $f^{-1}(0) \supsetneq \mathscr{M} \mathscr{C}\left(L_{0}\right)$
- There are extra points in $S_{2}$ beyond the scope of the conventional MC picture.
- One possibility is we need additional 'deformation data' of MC sets of singular Lagrangians.
- The NA analytic topology more or less enforces us to handle singular Lagrangian fibers differently.


## Further evidence: a folklore conjecture

## Conjecture: (Kontsevich, Seidel, Auroux, ...)

The critical values of the mirror Landau-Ginzburg superpotential on $X^{\vee}$ are the eigenvalues of the quantum multiplication by the first Chern class on $X$.

- Recall that $X=\mathbb{C}^{n} \backslash\left\{z_{1} \cdots z_{n}=1\right\}$ and $Y=\left\{x_{0} x_{1}=1+y_{1}+\cdots+y_{n-1}\right\}$
- The Gross's Lagrangian fibration $\pi$ can be placed in not only $X$ but also possibly a larger ambient manifold $\bar{X}$
- Often, we can check the Maslov-0 disks keep the same. Then, we will have the same analytic topology for $\left(X_{0}^{\vee}, \pi_{0}^{\vee}\right)$ Besides, we can also use the same $g: X_{0}^{\vee} \rightarrow \mathscr{Y}_{0}$ and $f: \mathscr{Y} \rightarrow B$ as before.
- On the other hand, there are no Maslov-2 disks in $X$, but there will be new Maslov-2 disks in $\bar{X}$. It gives a global superpotential $W_{0}$ on the analytic open domain $X_{0}^{\vee} \cong \mathscr{Y}_{0}$ (using the embedding $g$ ). Moreover, $W_{0}$ is polynomial for our example.
- By our definition of 'SYZ mirror', the analytic domain $\mathscr{Y}_{0}$ is Zariski dense in the algebraic $\Lambda$-variety $Y$. Hence, it can be extended on the whole algebraic variety $Y$, denoted by $W$.
(In general, it depends on the Kähler form $\omega$ )
- Choosing various ambient space $\bar{X}$ will produce various different Landau-Ginzburg superpotential $W$ on $Y$

| ambient space |
| :---: |
| LG superpotential |
| Critical points |
| Critical values |

$$
\bar{X}=\mathbb{C} \mathbb{P}^{n} \quad \text { Let } H \in \pi_{2}(\bar{X}) \text { be the class of a complex line. }
$$

$W=x_{1}+\frac{T^{E(H)} x_{0}^{n}}{y_{1} \cdots y_{n-1}}$ defined on $Y=\left\{x_{0} x_{1}=1+y_{1}+\cdots+y_{n-1}\right\}$, where $E(H)=\frac{1}{2 \pi} \omega \cap H$

There are $n+1$ critical points in a dual analytic $f$-fiber over $\left(0, \ldots, 0, a_{\omega}\right) \in B \equiv \mathbb{R}^{n}$ where $a_{\omega} \in \mathbb{R}$ depends on the Kähler form $\omega$. Explicitly, these critical points of $W$ are as follows

$$
\left\{\begin{array}{l}
x_{0}=T^{-\frac{E(\mathcal{H})}{n+1}} e^{-\frac{2 \pi i s}{n+1}} \\
x_{1}=n T^{\frac{E \mathcal{H})}{n+1}} e^{\frac{2 i s i s}{n+1}} \\
y_{1}=\cdots=y_{n-1}=1
\end{array} \quad s \in\{0,1, \ldots, n\}\right.
$$

Remark: There may be many other examples by thinking
(1) other toric CY variety than $\mathbb{C}^{n}$
(2) other compactification $\bar{X}$
$(n+1) T^{\frac{\omega(H)}{n+1}} e^{\frac{2 \pi i}{n+1} s}$ for $s \in\{0,1, \ldots, n\} \quad$ One can check the folklore conjecture holds

| ambient space |
| :---: |
| LG superpotential |
| Critical points |
| Critical values |

$\bar{X}=\mathbb{C} \mathbb{P}^{m} \times \mathbb{C} \mathbb{P}^{n-m}$ for $0<m<n$
This is also a compactification of $\mathbb{C}^{n}$

Let $H_{1}, H_{2} \in \pi_{2}(\bar{X})$ be the classes of a complex line in $\mathbb{C P}^{m} \times p t$ and in $p t \times \mathbb{C} \mathbb{P}^{n-m}$

1) $W=x_{1}+\frac{T^{E\left(H_{1}\right)} x_{0}^{m}}{y_{1} \cdots y_{m}}+\frac{T^{E\left(H_{2}\right)} x_{0}^{n-m}}{y_{m+1} \cdots y_{n-1}}$ defined on the same $Y=\left\{x_{0} x_{1}=1+y_{1}+\cdots+y_{n-1}\right\}$
2) $W=x_{1}+\frac{T^{E\left(H_{1}\right)} x_{0}}{y_{1}}+T^{E\left(H_{2}\right)} x_{0}$ defined on $Y=\left\{x_{0} x_{1}=1+y_{1}\right\}$, ( for $n=2, m=1$ )

We have four critical points $\left\{\begin{array}{l}x_{0}= \pm T^{\frac{-E\left(\mathcal{H}_{2}\right)}{2}} \\ x_{1}= \pm T^{\frac{E\left(\mathcal{H}_{1}\right)}{2}} \pm T^{\frac{E\left(\mathcal{H}_{2}\right)}{2}} \text { in the fiber of } f \text { over } \hat{q}=\left(\frac{E\left(H_{1}\right)-E\left(H_{2}\right)}{2}, a_{\omega}\right) \in B=\mathbb{R}^{2} \\ y_{1}= \pm T^{\frac{E\left(\mathcal{H}_{1}\right)-E\left(\mathcal{H}_{2}\right)}{2}}\end{array}\right.$
Remark: It may happen that for some Kähler form $\omega$, the number $a_{\omega}=0$;
If $E\left(H_{1}\right)=E\left(H_{2}\right)$, the $\hat{q}$ is a singular point; we don't know how to prove the folklore conjecture.
If $E\left(H_{1}\right) \neq E\left(H_{2}\right)$, the $\hat{q}$ lies on the wall; the conventional proof fails for the Maslov-0 disks, but we can still prove it in my other paper. In general, we don't know if the critical points always avoid the walls or singular locus. It seems the walls might be dispersed in an open subset in $B$ (e.g. blowup of $\mathbb{C}^{n}$ along a hyper)
$(m+1) T^{\frac{E\left(H_{1}\right)}{m+1}} e^{\frac{2 \pi i}{m+1} r}+(n-m+1) T^{\frac{E\left(H_{2}\right)}{n-m+1}} e^{\frac{2 \pi i}{n-m+1} s}$
for $r \in\{0,1, \ldots, m\}$ and $s \in\{0,1, \ldots, n-m\}$ One can also check the folklore conjecture.

## Generalizations

We can repeat the proof almost verbatim for more general examples.

- Let $\mathscr{X}_{P}$ (e.g. $\mathbb{C}^{n}$ ) be a toric Calabi-Yau manifold equipped with a toric Kähler form $\omega$ corresponding to the (unbounded) moment polytope

$$
P: \quad\left\langle m, v_{i}\right\rangle+\lambda_{i} \geq 0 \quad \text { where } m \in M_{\mathbb{R}} \cong \mathbb{R}^{n} \text { and } v_{i} \text { 's are the rays in the fan }
$$ We may assume $v_{1}, \ldots, v_{n}$ form a basis of $N=M^{*}$. Let $v_{n+a}=k_{a 1} v_{1}+\cdots+k_{a n} v_{n}$ be the remaining rays. The Calabi-Yau condition means there is $m_{0} \in M$ such that $\left\langle m_{0}, v_{i}\right\rangle=1$; in particular, $k_{a 1}+\cdots+k_{a n}=1$

Note that $v_{s}-v_{n}(1 \leq s<n)$ form a basis in the sub-lattice $\left\langle m_{0}, \cdot\right\rangle=0$. We define

$$
X_{P}=\mathscr{X}_{P} \backslash\left(z^{m_{0}}=1\right)
$$

It admits a Gross's special Lagrangian fibration $\pi$ as before.

- On the other side, we define a Laurent polynomial

$$
h\left(y_{1}, \ldots, y_{n-1}\right)=\sum_{s=1}^{n-1} T^{\lambda_{s}}\left(1+\delta_{s}\right) y_{s}+T^{\lambda_{n}} y_{n}\left(1+\delta_{n}\right)+\sum_{a} T^{\lambda_{n+a}}\left(1+\delta_{n+a}\right) \prod_{s=1}^{n-1} y_{s}^{k_{a s}}
$$

The singular locus $\Delta$ of $\pi$ is precisely decided by the tropicalization $h_{\text {trop }}$ of $h$. Here each $\delta_{i} \in \Lambda_{+}$is given by the counts of stable disks with sphere bubbles. Sometimes they are not zero; the valuation $\mathrm{v}\left(\delta_{i}\right)$ is the smallest area of sphere bubble. Finally, we define

$$
Y_{h}=\left\{(x, y) \in \Lambda^{2} \times\left(\Lambda^{*}\right)^{n-1} \mid x_{0} x_{1}=h(y)\right\}
$$

## Theorem: $Y_{h}$ is SYZ mirror to $X_{P}$

Example: Take $h(y)=1+y_{1}+\cdots+y_{n-1}$, and the corresponding tropical polynomial is

$$
h_{\text {trop }}=\min \left\{0, q_{1}, \ldots, q_{n-1}\right\}
$$

which somehow plays the leading role. For instance
i. describes the walls on the $A$ side
ii. appears in the formula of $f$ i.e. the pair $(j, F)$ on the $B$ side
iii. gives the singular locus $\Delta=B \backslash B_{0}$
"SYZ converse": Given $h_{\text {trop }}$ and $h$, we conversely have $P^{\prime}:=\left\{\left(\bar{q}, q_{n}\right) \mid q_{n}+h_{\text {trop }}(\bar{q}) \geq 0\right\} \cong P$
This picture will be lost if we only work over $\mathbb{C}$.
Example: $h(y)=y_{1}+T^{-1} y_{2}+T^{3.14}+T^{2} y_{1}^{2}+y_{1} y_{2}+T^{2} y_{2}^{2}$
Then, we can recover $P: \quad v_{1}=(1,0,0) \quad \lambda_{1}=0$
Have infinite such examples.

$$
v_{2}=(0,1,0) \quad \lambda_{2}=-1
$$

$$
v_{3}=(0,0,1) \quad \lambda_{3}=3.14
$$

$$
v_{4}=(2,0,-1) \quad \lambda_{4}=2
$$

$$
v_{5}=(1,1,-1) \quad \lambda_{5}=0
$$

$$
v_{6}=(0,2,-1) \quad \lambda_{6}=2
$$

## Generalizations

We can repeat the proof almost verbati © Let $\mathscr{X}_{P}$ (e.g. $\mathbb{C}^{n}$ ) be a toric Calabi-Y: corresponding to the (unbounded) m

$$
P: \quad\left\langle m, v_{i}\right\rangle+\lambda_{i} \geq 0 \quad \text { wher }
$$

We may assume $v_{1}, \ldots, v_{n}$ form a basis remaining rays. The Calabi-Yau conditic in particular, $k_{a 1}+\cdots+k_{a n}=1$

Note that $v_{s}-v_{n}(1 \leq s<n)$ form a basis in the sub-lattice $\left\langle m_{0}, \cdot\right\rangle=0$. We define

$$
X_{P}=\mathscr{X}_{P} \backslash\left(z^{m_{0}}=1\right)
$$

## It admits a Gross's special Lagrangian fibration $\pi$ as before.

- On the other side, we define a Laurent polynomial

$$
h\left(y_{1}, \ldots, y_{n-1}\right)=\sum_{s=1}^{n-1} T^{\lambda_{s}}\left(1+\delta_{s}\right) y_{s}+T^{\lambda_{n}} y_{n}\left(1+\delta_{n}\right)+\sum_{a} T^{\lambda_{n+a}}\left(1+\delta_{n+a}\right) \prod_{s=1}^{n-1} y_{s}^{k_{a s}}
$$

The singular locus $\Delta$ of $\pi$ is precisely decided by the tropicalization $h_{\text {trop }}$ of $h$. Here each $\delta_{i} \in \Lambda_{+}$is given by the counts of stable disks with sphere bubbles. Sometimes they are not zero; the valuation $\mathrm{v}\left(\delta_{i}\right)$ is the smallest area of sphere bubble. Finally, we define

$$
Y_{h}=\left\{(x, y) \in \Lambda^{2} \times\left(\Lambda^{*}\right)^{n-1} \mid x_{0} x_{1}=h(y)\right\}
$$

## Theorem: $Y_{h}$ is SYZ mirror to $X_{P}$

Example: Take $h(y)=1+y_{1}+\cdots+y_{n-1}$, and the corresponding tropical polynomial is

$$
h_{\text {trop }}=\min \left\{0, q_{1}, \ldots, q_{n-1}\right\}
$$

which somehow plays the leading role. For instance
i. describes the walls on the $A$ side
ii. appears in the formula of $f$ i.e. the pair $(j, F)$ on the $B$ side
iii. gives the singular locus $\Delta=B \backslash B_{0}$
"SYZ converse": Given $h_{\text {trop }}$ and $h$, we conversely have $P^{\prime}:=\left\{\left(\bar{q}, q_{n}\right) \mid q_{n}+h_{\text {trop }}(\bar{q}) \geq 0\right\} \cong P$
This picture will be lost if we only work over $\mathbb{C}$.
Example: $h(y)=y_{1}+T^{-1} y_{2}+T^{3.14}+T^{2} y_{1}^{2}+y_{1} y_{2}+T^{2} y_{2}^{2}$
Then, we can recover $P: \quad v_{1}=(1,0,0) \quad \lambda_{1}=0$
Have infinite such examples.

$$
\begin{array}{ll}
v_{1}=(1,0,0) & \lambda_{1}=0 \\
v_{2}=(0,1,0) & \lambda_{2}=-1 \\
v_{3}=(0,0,1) & \lambda_{3}=3.14 \\
v_{4}=(2,0,-1) & \lambda_{4}=2 \\
v_{5}=(1,1,-1) & \lambda_{5}=0 \\
v_{6}=(0,2,-1) & \lambda_{6}=2
\end{array}
$$

## Thanks for your attention!

