Family Floer program and non-archimedean SYZ mirror construction

Hang Yuan
Stony Brook University
arXiv:2003.06106

SYZ's picture: Review - $1 / 2$

- A (special) Lagrangian fibration π (possibly with singularities)

- B_{0} is the smooth locus of π :
- $L_{q}:=\pi^{-1}(q)$ is the Lag. fiber over q
- By Arnold-Liouville's Theorem,
- For $q \in B_{0}, L_{q}$ must be a torus $T^{n}=\left(S^{1}\right)^{n}$.
- B_{0} has an integral affine structure (locally looks like \mathbb{R}^{n})
- $X_{0} \equiv \pi^{-1}\left(B_{0}\right) \rightarrow B_{0}$ gives a Lagrangian torus fibration.

SYZ's picture: Review - $2 / 2$

- Following SYZ's idea of T-duality, the mirror could be obtained by taking a dual fibration.
X_{0}
π
\downarrow
B_{0}

$$
\begin{aligned}
& X_{0}^{\vee} \equiv \bigcup_{q \in B_{0}} H^{1}\left(L_{q}, U(1)\right) \\
& \pi^{\vee} \downarrow \\
& \stackrel{\vee}{B_{0}}
\end{aligned}
$$

- Classically, the dual fiber is expected to be $H^{1}\left(L_{q}, U(1)\right)$
$=\left\{\right.$ all flat $U(1)$-connections on L_{q} up to gauge equivalence. $\}$ $\cong U(1)^{n} \cong\left(S^{1}\right)^{n} \quad$ is also a torus. (because L_{q} is a torus)
- Now, X_{0}^{\vee} can be regarded as a dual torus fibration ('T-duality')

Quantum correction and Family Floer - $1 / 3$

The T-duality need to be modified by so-called 'quantum corrections' (q.c.) which are given by counting holomorphic disks in $\pi_{2}\left(X, L_{q}\right)$ for $q \in B_{0}$ (Lagrangian Floer theory)

Here we still require $q \in B_{0}$ above, L_{q} is still smooth, but such a holomorphic disk can get in touch with those singular fibers over $B \backslash B_{0}$.

So these q.c. may include info. outside the fibration, e.g. singular fibers
e.g. (toric) divisors
c.f. FOOO, cpt toric mfd (Maslov-two disks)
\Longrightarrow q.c. is necessary

Quantum correction and Family Floer - 2/3

Namely, we are gonna to study Lagrangian Floer theory for the family $\left(L_{q}\right)_{q \in B_{0}}$ of torus fibers simultaneously. This gives the name Family Floer.

- The Family Floer theory is invented by Fukaya in around 2000; later, Tu and Abouzaid made great progress.
- Roughly, FF predicts that the dual torus fiber of $L_{q}, q \in B_{0}$ is not

$$
H^{1}\left(L_{q}, U(1)\right) \cong U(1)^{n}
$$

but (possibly a subset of) a 'non-archimedean torus'

$$
H^{1}\left(L_{q}, U_{\Lambda}\right) \cong U_{\Lambda}^{n}
$$

where U_{Λ} (later) is the multiplicative group of the Novikov field

$$
\Lambda:=\left\{\sum_{i=0}^{\infty} a_{i} T^{E_{i}} \mid a_{i} \in \mathbb{C}, E_{i} \nearrow+\infty\right\} \begin{aligned}
& \text { This is a non-archimedean } \\
& \text { field, just like } \mathbb{C}((T))
\end{aligned}
$$

Quantum correction and Family Floer - $3 / 3$

Previous FF works more or less rely on tautological unobstructedness
Assumption: There is no holomorphic disk in $\pi_{2}\left(M, L_{q}\right)$ for all q.

Motivation \# 1

Can we somehow drop or weaken this assumption? Because
(i) These disks are the 'quantum corrections' we need.
(ii) At least, Maslov-two disks \Longrightarrow Landau-Ginzburg potential (FOOO)

Moreover, the expected mirror $X^{\vee} \equiv \sqcup_{q} H^{1}\left(L_{q} ; U_{\Lambda}\right)$ is just a set at first. It is a very delicate issue to put an 'analytic space' structure on X^{\vee} !

Motivation \# 2

We aim to develop a rigid analytic space* structure from the ground up.

$$
\text { will see: } A_{\infty} \text {-homotopy in Lag. Floer }(A) \Longrightarrow \text { Isom. of rigid analytic }(B)
$$

Main theorem

Suppose we have a Lagrangian torus fibration $\pi: U \rightarrow B_{0}$ on an open subset U of a closed symplectic manifold (M, ω). (e.g. compact toric)

Main Theorem

Assume Maslov indices of pseudo-holomorphic disks are non-negative. Then we can associate to (M, π) a triple $\left(M^{\vee}, W^{\vee}, \pi^{\vee}\right)$ consisting of

1. a Λ-rigid analytic space M^{\vee};
2. a global function W^{\vee};
3. a projection $\pi^{\vee}: M^{\vee} \rightarrow B_{0} \quad$ 'SYZ dual fibration'
mirror space
Landau-Ginzburg potential
unique up to isomorphism of rigid analytic spaces.
(Our mirror construction is independent of choices!)

- Kontsevich-Soibelman proposed to use non-archimedean geometry to study mirror symmetry. We justify this proposal in some sense.

Rigid analytic geometry: Review

- val : $\sum_{i \geq 0} a_{i} T^{E_{i}} \in \Lambda\left(a_{0} \neq 0\right) \mapsto E_{0} \in \mathbb{R} ;$ norm $|\cdot|=\exp (-\operatorname{val}())$; \Longrightarrow adic topology on Λ; such a field is a non-archimedean field
- mul. gp. $U_{\Lambda}=\{\operatorname{val}(z)=0\}=\{|z|=1\}$; analogue of $U(1) \equiv S^{1}$
- Nov. ring $\Lambda_{0}:=\{\mathrm{val} \geq 0\} ; \Lambda_{+}:=\{\mathrm{val}>0\}$ used to hold q.c. data
- $U_{\Lambda}=\mathbb{C}^{*} \oplus \Lambda_{+} ; \quad \Lambda_{0}=\mathbb{C} \oplus \Lambda_{+}$. $[u] \neq 0 \in \pi_{2}(M, L) ; E(u)>0$

Algebraic/analytic geom. over \mathbb{C}

Polynomial alg. $R_{n}=\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$
$\operatorname{Spec}\left(R_{n}\right) \cong \mathbb{C}^{n}$, affine space
Affine scheme $\operatorname{Spec}\left(R_{n} / \mathfrak{a}\right)=V(\mathfrak{a})$
Variety/scheme
$\log :\left(\mathbb{C}^{*}\right)^{n} \rightarrow \mathbb{R}^{n}, \quad z_{i} \mapsto \log \left|z_{i}\right|$

- a torus fibration
- fiber is topologically $T^{n}=U(1)^{n}$

Rigid analytic geom. over Λ
Tate's algebra $T_{n}:=\Lambda\left\langle z_{1}, \ldots, z_{n}\right\rangle$
$=\left\{f=\sum a_{\nu} \mathbf{z}^{\nu} \mid \operatorname{val}\left(a_{\nu}\right) \rightarrow 0\right\}$
$=\left\{f \mid f\right.$ converges on unit ball $\left.B_{\Lambda}^{n}\right\}$
$\operatorname{Sp}\left(T_{n}\right) \cong B_{\Lambda}^{n}=\left\{\left(z_{i}\right) \in \Lambda^{n}| | z_{i} \mid \leq 1\right\}$
Affinoid space $\operatorname{Sp}\left(T_{n} / \mathfrak{a}\right)=V(\mathfrak{a})$
Rigid analytic space/variety (Defn) trop : $\left(\Lambda^{*}\right)^{n} \rightarrow \mathbb{R}^{n}, z_{i} \mapsto \operatorname{val}\left(z_{i}\right)$

- 'a non-archimedean torus fibration'
- fiber at 0 is our nonar. torus U_{Λ}^{n}

Local chart of $M^{\vee}-1 / 6$

Claim: $\pi^{\vee}: M^{\vee} \rightarrow B_{0}$ is locally trop $:\left(\Lambda^{*}\right)^{n} \rightarrow \mathbb{R}^{n}, z_{i} \mapsto \operatorname{val}\left(z_{i}\right)$.

Consider the so-called polytopal domain: (an affinoid space)

$$
\operatorname{trop}^{-1}(\Delta) \equiv \operatorname{Sp} \Lambda\langle\Delta\rangle \quad \Delta \subset \mathbb{R}^{n} \text { a rational polyhedron }
$$

Here $\Lambda\langle\Delta\rangle$ is the so-called polyhedral affinoid algebra:
$\Lambda\langle\Delta\rangle=\left\{f=\sum_{\nu \in \mathbb{Z}^{d}} a_{\nu} \mathbf{z}^{\nu} \left\lvert\, \begin{array}{c}\operatorname{val}\left(a_{\nu}\right)+\langle\nu, u\rangle \rightarrow \infty \\ \text { for all } u \in \Delta\end{array}\right.\right\} \equiv\left\{f \mid f\right.$ converges on $\left.\operatorname{trop}^{-1}(\Delta)\right\}$

In our situation, the base B_{0} locally looks like \mathbb{R}^{n}. It makes sense to define
$\Lambda\langle\Delta, q\rangle \quad$ for $q \in B_{0}$ and a small rational polyhedron $\Delta \subset B_{0}$
$G L(n, \mathbb{Z})$ preserves 'rational' condition. Think: $\Delta \subset \mathbb{R}^{n} ; q$ is like the origin.
Example: If $\Delta=\{q\}$ then $\operatorname{Sp} \Lambda\langle q, q\rangle \equiv \operatorname{trop}^{-1}(0) \equiv U_{\Lambda}^{n} \equiv H^{1}\left(L_{q} ; U_{\Lambda}\right)$.

Local chart of $M^{\vee}-2 / 6$

Claim:

Our mirror space M^{\vee} is locally given by a closed analytic subvariety

$$
V(\mathfrak{a}):=\operatorname{Sp}(\Lambda\langle\Delta, q\rangle / \mathfrak{a}) \quad \text { in the polytopal domain } \operatorname{trop}^{-1}(\Delta)
$$

cut out by the ideal \mathfrak{a} (defn later) of 'weak Maurer-Cartan equations''weak Maurer-Cartan equations'

- Following FOOO, we can associate to $L=L_{q}$ a filtered A_{∞} algebra

$$
\left(H_{d R}^{*}(L), \mathfrak{m}\right) \quad \mathfrak{m}_{k}=\sum_{\beta} T^{E(\beta)} \mathfrak{m}_{k, \beta}
$$

where $\beta \in \pi_{2}(M, L), E(\beta)=\omega \cap \beta$ is the energy

- $\mathfrak{m}_{k, \beta}: H^{*}(L) \otimes \cdots \otimes H^{*}(L) \rightarrow H^{*}(L)$ is a map of degree $2-k-\mu(\beta)$ (counting holo disks in class β) $\mathfrak{m}=\left(\mathfrak{m}_{k}\right)=\left(\mathfrak{m}_{k, \beta}\right)$ satisfies A_{∞} eq
- Gromov's compactness $\Longrightarrow \mathfrak{m}$ converges for adic topology on Λ.
- Use homological perturbation to obtain \mathfrak{m} (canonical model).

Local chart of $M^{\vee}-3 / 6$

Definition of Maurer-Cartan equation (MC eq)

$$
\sum_{\beta} \sum_{k} T^{E(\beta)} \mathfrak{m}_{k, \beta}(b, \ldots, b)=0 ; \quad \text { for } b \in H^{1}\left(L ; \Lambda_{+}\right)
$$

There is an important property of \mathfrak{m} : for any $b \in H^{1}(L)$, we have

Divisor axioms

$\sum_{\ell=0}^{k} \mathfrak{m}_{k+1, \beta}\left(x_{1}, \ldots, x_{\ell-1}, b, x_{\ell}, \ldots, x_{k}\right)=\partial \beta \cap b \cdot \mathfrak{m}_{k, \beta}\left(x_{1}, \ldots, x_{k}\right)$ $\Longrightarrow \mathfrak{m}_{k, \beta}(b, \ldots, b)=\frac{(\partial \beta \cap b)^{k}}{k!} \mathfrak{m}_{0, \beta} \quad$ using combinatorics

By divisor axioms, MC eq can be transferred to (which we prefer)

$$
\sum_{\beta} T^{E(\beta)} e^{\partial \beta \cap b} \mathfrak{m}_{0, \beta}=0 ; \quad b \in H^{1}\left(L ; \Lambda_{0}\right), \partial \beta \in \pi_{1}(L) \cong \mathbb{Z}^{n}
$$

Remark: This idea was used in FOOO's work on compact toric manifolds.

Local chart of $M^{\vee}-4 / 6$

Idea: Forget about the original MC eq $\sum T^{E(\beta)} e^{\partial \beta \cap b} \mathfrak{m}_{0, \beta}$, and focus on:
MC formal power series (will not lose any information)
$P=\sum_{\beta} T^{E(\beta)} Y^{\partial \beta} \mathfrak{m}_{0, \beta} . \quad$ (a collection of series, $\mathfrak{m}_{0, \beta} \in H^{*}(L) \cong \mathbb{R}^{N}$)

- Fix a basis $\left(\theta_{i}\right) \subset H^{1}, Y^{\partial \beta} \longleftrightarrow Y_{1}^{\partial_{1} \beta} \cdots Y_{n}^{\partial_{n} \beta}$ with $\partial_{i} \beta=\partial \beta \cap \theta_{i}$.
- If we set $b=\sum_{i} x_{i} \theta_{i}\left(x_{i} \in \Lambda_{0}\right)$ then $e^{\partial \beta \cap b}=\left(e^{x_{1}}\right)^{\partial_{1} \beta} \cdots\left(e^{x_{n}}\right)^{\partial_{n} \beta}$
$\mathbf{y}=\left(y_{i}=e^{x_{i}}\right)_{i=1}^{n}$ is a point in $U_{\Lambda}^{n} ; \quad$ Any point \mathbf{y} in U_{Λ}^{n} is in this form.

Point 1: The restriction function $\left.P\right|_{u_{\Lambda}^{n}}$ 'recovers' the $M C$ equation.

$$
\begin{aligned}
& P(\mathbf{y})=\sum T^{E(\beta)} y_{1}^{\partial_{1} \beta} \cdots y_{n}^{\partial_{n} \beta} \mathfrak{m}_{0, \beta} \\
& =\sum T^{E(\beta)} e^{\partial \beta \cap b} \mathfrak{m}_{0, \beta} \\
& =\sum T^{E(\beta)} \mathfrak{m}_{k, \beta}(b, \ldots, b) \quad \text { (DA) }
\end{aligned}
$$

Define
$U_{\Lambda}^{n} \subset \operatorname{Domain}(P) \subset\left(\Lambda^{*}\right)^{n}$, the domain of convergence.

Local chart of $M^{\vee}-5 / 6$

Point 2: P converges on a bigger domain $\boldsymbol{t r o p}^{-1}(\Delta) \supset U_{\Lambda}^{n} \equiv \operatorname{trop}^{-1}(0)$.
Reverse isoperimetric inequality: $E(\beta) \geq c L(\partial \beta)$ (Groman-Solomon). Take $\Delta \ni 0$ where $0 \leftrightarrow q \in B_{0}$ s.t. $\operatorname{diam}(\Delta) \leq c \Longrightarrow$ Point 2
will see: P contains info. of nearby Lag. fibers over Δ. (Fukaya's trick)
Moreover, there is an important 'rigidity' for the formal power series:
Point 3: Conversely, the function $\left.P\right|_{u_{\lambda}^{n}}$ determines the series P itself!
Let $f=\sum a_{\nu} z^{\nu}$ be a formal power series in $\Lambda\left[\left[z_{1}^{ \pm}, \ldots z_{n}^{ \pm}\right]\right]$. Then
Lemma X 'vanish center fiber \Longrightarrow vanish everywhere' (not hard) If f vanishes on $U_{\Lambda}^{n} \cong \operatorname{trop}^{-1}(0)$, then $f \equiv 0$ is identically zero.

Local chart of $M^{\vee}-6 / 6$

Notice that $\mathfrak{m}_{0, \beta} \in H^{2-\mu(\beta)}(L)$; we also assume $\mu(\beta) \geq 0$. So, consider:
$P=\left(\sum_{\mu(\beta)=2} T^{E(\beta)} Y^{\partial \beta} \mathfrak{m}_{0, \beta}\right)+\left(\sum_{\mu(\beta)=0} T^{E(\beta)} Y^{\partial \beta} \mathfrak{m}_{0, \beta}\right)$
$\mathrm{MC} \mathrm{eq}=\mathrm{W}+$ weak MC eq

$$
P=: W \cdot \mathbf{1}+\sum_{p<q} Q_{p q} \cdot \theta_{p q} \quad \theta_{p q}:=\theta_{p} \wedge \theta_{q} \in H^{2}(L) \text { basis }
$$

rec. Δ small, $\operatorname{Domain}(P) \supset \operatorname{trop}^{-1}(\Delta) \Longrightarrow W, Q_{p q} \in \Lambda\langle\Delta, q\rangle \cong \Lambda\langle\Delta\rangle$.
Definition: $\mathfrak{a}=$ the ideal gen. by all $Q_{p q}=$ 'the ideal of weak MC eqs'.
(i) A local chart of the mirror space M^{\vee} is defined to be $V(\mathfrak{a}):=\operatorname{Sp}(\Lambda\langle\Delta, q\rangle / \mathfrak{a}) \subset \operatorname{trop}^{-1}(\Delta) \quad$ 'zero locus of weak MC eqs'
(ii) Moreover, this W can be viewed as a function on $V(\mathfrak{a})$; it will be a local piece of the global LG potential W^{\vee}.

Transition map - $1 / 5$

Now that we have lots of 'local charts'. Our next step is to glue them!

Let $V(\mathfrak{a})$ and $V(\tilde{\mathfrak{a}})$ be the local charts as before.
A transition $\operatorname{map} \Phi^{*}: V(\tilde{\mathfrak{a}}) \rightarrow V(\mathfrak{a})$

like scheme theory
An affinoid algebra homomorphism

$$
\Phi: \Lambda\langle\Delta, q\rangle / \mathfrak{a} \rightarrow \Lambda\langle\tilde{\Delta}, \tilde{q}\rangle / \tilde{\mathfrak{a}}
$$

will do: First find a homo. $\Lambda\langle\Delta, q\rangle \rightarrow \Lambda\langle\tilde{\Delta}, \tilde{q}\rangle$; then pass to the quotient
Two main aspects for the construction
(I) Fukaya's trick
(II) A_{∞} homotopy equivalence

Transition map - $2 / 5$

(I) Fukaya's trick

Choose $F \in \operatorname{Diff}_{0}(M)$ s.t. $F(L)=\tilde{L}$. There is a natural identification:

$$
\mathcal{M}(J, L ; \beta) \cong \mathcal{M}\left(F_{*} J, \tilde{L} ; \tilde{\beta}\right)
$$

$$
u \text { is } J \text {-holomorphic } \mapsto F \circ u \text { is } F_{*} J \text {-holomorphic }
$$

where $\beta \in \pi_{2}(M, L), \tilde{\beta} \equiv F_{*} \beta \in \pi_{2}(M, \tilde{L})$, and $F_{*} J:=d F \circ J \circ d F^{-1}$.

Fukaya's trick

The two A_{∞} algebras $\mathfrak{m}^{J, L}$ and $\mathfrak{m}^{F_{*} J, \tilde{L}}$ are closely related to each other.

- 'Counting numbers' are basically the same; only the energy is varied.
- Explicitly,

$$
\left\{\begin{array}{l}
\mathfrak{m}_{k, \tilde{\beta}}^{F_{*} J, \tilde{L}}\left(x_{1}, \ldots, x_{k}\right)=F^{-1 *} \mathfrak{m}_{k, \beta}^{J, L}\left(F^{*} x_{1}, \ldots, F^{*} x_{k}\right) \\
E(\tilde{\beta})=E(\beta)+\langle\partial \beta, \tilde{q}-q\rangle E(\tilde{\beta})=E(\beta)+\langle\partial \beta, \tilde{q}-q\rangle
\end{array}\right.
$$

- Intuitively, may call $\mathfrak{m}^{F_{*} J, \tilde{L}}$ the F-pushforward A_{∞} algebra of $\mathfrak{m}^{J, L}$

Transition map - 3/5

- Think of $q \leftrightarrow 0, \tilde{q} \leftrightarrow c \in \mathbb{R}^{n}$. Recall $P=\sum T^{E(\beta)} Y^{\partial \beta} \mathfrak{m}_{0, \beta}^{J, L}$.

1. $\left.P\right|_{U_{\Lambda}^{n}} \Longrightarrow$ the MC eq of $\mathfrak{m}^{J, L} \quad$ (said before; $U_{\Lambda}^{n} \equiv \operatorname{trop}^{-1}(0)$)
2. $\left.P\right|_{\text {trop }^{-1}(c)} \Longrightarrow$ the MC eq of $\mathfrak{m}^{F_{*} J, \tilde{L}} \quad$ (further using Fukaya's trick)

Using Fukaya's tricks, we justify our previous message:
P contains info. of nearby Lag. fibers (all L_{c} for $c \in \Delta$)
Recall: $\operatorname{Domain}(P) \supset \operatorname{trop}^{-1}(\Delta) \supset U_{\Lambda}^{n}$ for small Δ (rev. iso. ineq.)
Why is Fukaya's trick useful? Goal: relate $V(\mathfrak{a})$ with $V(\tilde{\mathfrak{a}})$
First, we want to compare $\mathfrak{m}^{J, L}$ and $\mathfrak{m}^{J, \tilde{L}}$ for fixed J but different L, \tilde{L}. Now, only need to compare $\mathfrak{m}^{F_{*} J, \tilde{L}}$ and $\mathfrak{m}^{J, \tilde{L}}$ for varied J but the same \tilde{L}.

Transition map - $4 / 5$

To compare $\mathfrak{m}^{F_{*} J, \tilde{L}}$ and $\mathfrak{m}^{J, \tilde{L}}$, we take a path $\mathbf{J}: F_{*} J \nVdash J ; \Longrightarrow$
(II) A_{∞} homotopy equivalence $\mathfrak{C}^{F}=\left(\mathfrak{C}_{k}^{F}\right)=\left(\mathfrak{C}_{k, \beta}^{F}\right)$ a collection of op.

$$
\begin{aligned}
& \mathfrak{C}^{F} \triangleq \mathfrak{C}^{\mathcal{F}, \mathrm{J}}: \mathfrak{m}^{J, \tilde{L}} \longrightarrow \mathfrak{m}^{F_{*} J, \tilde{L}} \approx \mathfrak{m}^{J, L} \\
& \mathfrak{C}^{F} \triangleq \mathfrak{C}^{F, J}: \mathfrak{m}^{J, \tilde{L}} \longrightarrow \mathfrak{m}^{F_{*} J, \tilde{L}} \approx \mathfrak{m}^{J, L} \\
& \mathfrak{C}^{\mathcal{F}} \triangleq \mathfrak{C}^{F, \mathrm{~J}}: \mathfrak{m}^{J, \tilde{L}} \longrightarrow \mathfrak{m}^{F_{*} J, \tilde{L}} \underset{\sim}{\approx} \mathfrak{m}^{J, L \cdots \cdots} \\
& \text { its } \mathrm{MC} \text { eq gives } V(\mathfrak{a}) \\
& \text { its } \mathrm{MC} \text { eq gives } V(\tilde{\mathfrak{a}}) \not \text { <' }^{\prime}
\end{aligned}
$$

Define transition map (First step)

$\phi^{F}: \Lambda\langle\Delta, q\rangle \rightarrow \Lambda\langle\tilde{\Delta}, \tilde{q}\rangle, Y^{\alpha} \mapsto T^{\langle\alpha, \tilde{q}-q\rangle} \psi^{\alpha} \exp \left\langle\alpha, \sum T^{E(\beta)} Y^{\partial \beta} \mathfrak{C}_{0, \beta}^{F}\right\rangle$

Transition map - 5/5

Main Issue: mirror construction should not depend on choices But, $\phi^{F}: \Lambda\langle\Delta, q\rangle \rightarrow \Lambda\langle\tilde{\Delta}, \tilde{q}\rangle$ depends on choices !! e.g. F and \mathbf{J}.

Fortunately, this doesn't matter for the following two claims: Don't forget: what we need is not ϕ^{F} but a quotient homomorphism:

Claim (A) ϕ^{F} can pass to the quotient $\Phi=\left[\phi^{F}\right]: \Lambda\langle\Delta, q\rangle / \mathfrak{a} \rightarrow \Lambda\langle\tilde{\Delta}, \tilde{q}\rangle / \tilde{\mathfrak{a}}$ Moreover, we will prove $\Phi(W)=\tilde{W}$ and a global LG is very possible.

Definition: This Φ defines our transition map $\Phi^{*}: V(\tilde{\mathfrak{a}}) \rightarrow V(\mathfrak{a})$.

Claim (B): The quotient Φ only depends on the homotopy class of \mathfrak{C}^{F}. \Longrightarrow Our transition map Φ^{*} does not depend on choices!

We first explain Claim (A). It will be a result of our Wall Crossing Formula.

Claim (A) \& Wall Crossing Formula - $1 / 3$

For $\mathfrak{m}:=\mathfrak{m}^{J, L}$ and $\tilde{\mathfrak{m}}:=\mathfrak{m}^{J, \tilde{L}}$, we decompose their MC power series:

- $P=W \cdot \mathbf{1}+\sum Q_{p q} \theta_{p q}$
- $\tilde{P}=\tilde{W} \cdot \tilde{\mathbf{1}}+\sum \tilde{Q}_{p q} \tilde{\theta}_{p q}$
- $\mathbf{1}, \tilde{\mathbf{1}}=$ generators of H^{0}
- $\theta_{p q}, \tilde{\theta}_{p q}=$ basis of H^{2}
- $\mathfrak{a}=\left(Q_{p q}\right), \tilde{\mathfrak{a}}=\left(\tilde{Q}_{p q}\right)$ are ideals of weak Maurer-Cartan eqs.

Wall Crossing Formula
 (the key to Claim (A))

$$
\phi^{F}(\langle\eta, P\rangle)=\left\langle F_{*} \eta, \tilde{\mathbf{1}}\right\rangle \tilde{W}+\sum R_{p q}^{F, \eta} \tilde{Q}_{p q}
$$

- Here $\eta \in H_{*}(L)$ and $R_{p q}^{F, \eta}=\sum_{\tilde{\beta}} T^{E(\tilde{\beta})} Y^{\partial \tilde{\beta}}\left\langle F_{*} \eta, \mathfrak{C}_{1, \tilde{\beta}}^{F}\left(\tilde{\theta}_{p q}\right)\right\rangle$.
- η dual to $\theta_{p q} \Longrightarrow\langle\eta, P\rangle=Q_{p q},\left\langle F_{*} \eta, \tilde{\mathbf{1}}\right\rangle=0 \Longrightarrow \phi^{F}(\mathfrak{a}) \subset \tilde{\mathfrak{a}}$
- η dual to $\mathbf{1} \Longrightarrow\langle\eta, P\rangle=W,\left\langle F_{*} \eta, \tilde{\mathbf{1}}\right\rangle=1 \Longrightarrow \phi^{F}(W) \in \tilde{W}+\tilde{\mathfrak{a}}$ WCF \Longrightarrow Claim (A) i.e. the quotient $\Phi=\left[\phi^{F}\right]$ exists and $\Phi(W)=\tilde{W}$.

Claim (A) \& Wall Crossing Formula - $2 / 3$

Now, it remains to prove the Wall Crossing Formula:

Strategy of proof? Lemma X !

(Recall) If f vanishes on $U_{\Lambda}^{n} \cong \operatorname{trop}^{-1}(0)$, then $f \equiv 0$ is identically zero.

1. If we want to show an identity $f_{1} \equiv f_{2}$ of formal power series in $\Lambda\left[\left[z_{1}^{ \pm}, \ldots z_{n}^{ \pm}\right]\right]$, then it suffices to show $f_{1}=f_{2}$ holds restricting to U_{Λ}^{n}.
2. Moreover, recall the Novikov field enjoys the property that every $y \in U_{\Lambda}$ can be represented by $y=e^{x}$ for some $x \in \Lambda_{0}$.
3. Enough to show $f_{1}\left(e^{x_{1}}, \ldots, e^{x_{n}}\right)=f_{2}\left(e^{x_{1}}, \ldots, e^{x_{n}}\right)$. Put $b=\sum x_{i} \theta_{i}$ $\Longrightarrow e^{\partial \beta \cap b} \equiv\left(e^{x_{1}}\right)^{\partial_{1} \beta} \cdots\left(e^{x_{n}}\right)^{\partial_{n} \beta}=: \mathbf{y}^{\partial \beta}$, where $\partial_{i} \beta=\partial \beta \cap \theta_{i}$
4. Apply Divisor Axioms backward; e.g. $\mathbf{y}^{\partial \beta} \mathfrak{C}_{0, \beta}^{F} \rightsquigarrow \sum_{k} \mathfrak{C}_{k, \beta}^{F}(b, \ldots, b)$
5. A_{∞} structures in Lagrangian Floer join the game!

Example $P=\left.\sum T^{E(\beta)} Y^{\partial \beta} \mathfrak{m}_{0, \beta} \stackrel{\text { Lemma } X}{\longleftrightarrow} P\right|_{U_{\Lambda}^{n}} \stackrel{\text { Div.Axiom }}{\longleftrightarrow}$ MC eq

Claim (A) \& Wall Crossing Formula - $3 / 3$

$$
\text { (recall) } \phi^{F}: Y^{\alpha} \mapsto T^{\langle\alpha, \tilde{q}-q\rangle} Y^{\tilde{\alpha}} \exp \left\langle\tilde{\alpha}, \sum T^{E(\beta)} Y^{\partial \beta} \mathfrak{C}_{0, \beta}^{F}\right\rangle
$$

- $\alpha \in \pi_{1}(L) \longleftrightarrow \quad \tilde{\alpha}:=F_{*} \alpha \in \pi_{1}(\tilde{L}) \quad \cong \mathbb{Z}^{n}$.
- Observe: Only Maslov-zero disks contribute to 'wall-crossing': because $\mathfrak{C}_{0, \beta}^{F} \in H^{1-\mu(\beta)}(\tilde{L})$; we also assume $\mu(\beta) \geq 0$.
Proof of WCF: Wall Crossing Formula $\Leftrightarrow A_{\infty}$ equation (DA \& FT) Let $\mathbf{y}=\left(e^{x_{1}}, \ldots, e^{x_{n}}\right) \in U_{\Lambda}^{n}$ and $b=\sum x_{i} \theta_{i}$. It suffices to compute

$$
\left.\phi^{F}(\langle\eta, P\rangle)\right|_{Y=\mathbf{y}}
$$

$$
=\left.\phi^{F}\left(\sum\left\langle\eta, \mathfrak{m}_{0, \beta}\right\rangle T^{E(\beta)} Y^{\partial \beta}\right)\right|_{\mathbf{y}}=\left.\sum\left\langle\eta, \mathfrak{m}_{0, \beta}\right\rangle T^{E(\beta)} \phi^{F}\left(Y^{\partial \beta}\right)\right|_{\mathbf{y}}
$$

$$
\begin{aligned}
& =\sum\left\langle\eta, \mathfrak{m}_{0, \beta}\right\rangle T^{E(\beta)} T^{\langle\partial \beta, \tilde{q}-q\rangle} T^{E(\beta)} T^{\langle\partial \beta, \tilde{q}-q\rangle} Y^{\partial \tilde{\beta}} Y^{\partial \tilde{\beta}} \exp \left\langle\partial \tilde{\beta}, \sum \gamma^{E(\gamma}\right. \\
& =\sum\left\langle\eta, \mathfrak{m}_{0, \beta}\right\rangle T^{E(\tilde{\beta})} \exp (\partial \tilde{\beta} \cap b) \exp \left\langle\partial \tilde{\beta}, \sum T^{E(\gamma)} \mathfrak{C}_{k, \gamma}^{F}(b, \ldots, b)\right\rangle
\end{aligned}
$$

Divisor Axiom of $\mathfrak{m} \Longrightarrow$ Things like $\mathfrak{m}\left(\mathfrak{C}^{F}(b \cdots) \cdots \mathfrak{C}^{F}(\cdots)\right)$ 万rill appear

Claim (B) \& A_{∞} homotopy theory

Now that Claim (A) is proved. It suffices to show Claim (B). Recall:
Claim (A) ϕ^{F} can pass to the quotient $\Phi=\left[\phi^{F}\right]: \Lambda\langle\Delta, q\rangle / \mathfrak{a} \rightarrow \Lambda\langle\tilde{\Delta}, \tilde{q}\rangle / \tilde{\mathfrak{a}}$ Moreover, we will prove $\Phi(W)=\tilde{W}$ and a global LG is very possible.

Claim (B): The quotient Φ only depends on the homotopy classhomotopy class of \mathfrak{C}^{F}.
\Longrightarrow Our transition map Φ^{*} also does not depend on choices!

Note: More precisely, we need to develop an improved homotopy theory of A_{∞} alg, which I call ud-homotopy, where $\mathbf{u}=$ unitality and $\mathbf{d}=$ divisor axiom.

There are some heavy homological algebra, but the ideas are similar to previous ones.

Claim (B) \& A_{∞} homotopy theory

To prove Claim (B), we further consider two aspects as follows:
(B-1) For different choices, say $F \& F^{\prime}$, we claim the A_{∞} homomorphisms \mathfrak{C}^{F} and $\mathfrak{C}^{F^{\prime}}$ are ud-homotopic to each other.
(This is basically OK)
(B-2) We compare alg. homo. By their defining formulas, we can write
$\phi^{F^{\prime}}\left(Y^{\alpha}\right)=\phi^{F}\left(Y^{\alpha}\right) \cdot \exp \left\langle\alpha, \sum T^{E(\gamma)} Y^{\partial \gamma}\left(\mathfrak{C}_{0, \gamma}^{F^{\prime}}-\mathfrak{C}_{0, \gamma}^{F}\right)\right\rangle \quad \forall \alpha \in \pi_{1} \cong \mathbb{Z}^{n}$
It suffices to show (any α-component of) the 'error term'

$$
S(Y):=\sum T^{E(\gamma)} Y^{\gamma}\left(\mathfrak{C}_{0, \gamma}^{F^{\prime}}-\mathfrak{C}_{0, \gamma}^{F}\right)
$$

is contained in the ideal $\tilde{\mathfrak{a}}$ of weak MC eqs. $\quad \Longrightarrow \Phi=\left[\phi^{F}\right]=\left[\phi^{F^{\prime}}\right]$
Cocycle conditions use similar ideas: $\phi^{i k}\left(Y^{\alpha}\right)$ v.s. $\quad \phi^{i j} \circ \phi^{j k}\left(Y^{\alpha}\right)$.

Claim (B) \& A_{∞} homotopy theory

Sketch of proof of (B-2):

1. The homotopy condition means: $\exists\left(\mathfrak{f}_{s}\right)$ and $\left(\mathfrak{h}_{s}\right)$ for $s \in[0,1]$ s.t.

- $\mathfrak{f}_{0}=\mathfrak{C}^{F}$ and $\mathfrak{f}_{1}=\mathfrak{C}^{F^{\prime}}$
- $\frac{d}{d s} \mathfrak{f}_{s}=\sum(-1)^{*} \mathfrak{h}_{s}(\cdots \tilde{\mathfrak{m}} \cdots)+\sum(-1)^{*} \mathfrak{m}\left(\mathfrak{f}_{s} \cdots \mathfrak{f}_{s} \mathfrak{h}_{s} \mathfrak{f}_{s} \cdots \mathfrak{f}_{s}\right)$
- The ud-homotopy further means $\mathfrak{f}_{s}, \mathfrak{h}_{s}$ have some good properties.

2. The second bullet above allows us to make the comparison:

$$
\mathfrak{C}^{F^{\prime}}-\mathfrak{C}^{F}=\int_{0}^{1} \frac{d}{d s} \mathfrak{f}_{s} \cdot d s
$$

3. Let $\mathbf{y}=\left(e^{x_{1}}, \ldots, e^{x_{n}}\right) \in U_{\Lambda}^{n}$. Using Lemma X again, we will get

$$
S(Y) \triangleq \sum T^{E(\gamma)} Y^{\gamma}\left(\mathfrak{C}_{0, \gamma}^{F^{\prime}}-\mathfrak{C}_{0, \gamma}^{F}\right)=\sum \lambda_{p q}(Y) \tilde{Q}_{p q}(Y)
$$

$$
\left(\lambda_{p q} \text { is in terms of } \mathfrak{h}_{s}\right) \quad S(Y) \in \tilde{\mathfrak{a}} \Longrightarrow \Phi=\left[\phi^{F}\right]=\left[\phi^{F^{\prime}}\right]
$$

Summary

A_{∞} algebra

Maurer-Cartan eq

\Downarrow	\Downarrow
Local chart $V(\mathfrak{a})$	Transition map well-defined

A_{∞} homomorphism

Wall Crossing Formula

Transition map Φ^{*} well-defined
homotopy of A_{∞} homo.
'error term' $\in \mathfrak{a}$
\Downarrow
Transition map Φ^{*} choice-independent \&
Cocycle condition

