Family Floer program and non-archimedean SYZ mirror construction

Hang Yuan

Stony Brook University

arXiv:2003.06106

- A (special) Lagrangian fibration π (possibly with singularities)
 - $\begin{array}{c} & & \\ \pi \\ & \\ B_0 \subset B \end{array}$ B_0 is the smooth locus of π : • $L_q := \pi^{-1}(q)$ is the Lag. fiber over q
- By Arnold-Liouville's Theorem,
 - For $q \in B_0$, L_q must be a torus $T^n = (S^1)^n$.
 - B_0 has an integral affine structure (locally looks like \mathbb{R}^n)
- $X_0 \equiv \pi^{-1}(B_0) \rightarrow B_0$ gives a Lagrangian torus fibration.

SYZ's picture: Review - 2/2

 Following SYZ's idea of T-duality, the mirror could be obtained by taking a dual fibration.

$$\begin{array}{ccc} X_0 & X_0^{\vee} \equiv \bigcup_{q \in B_0} H^1(L_q, U(1)) \\ \pi \bigg| & \pi^{\vee} \bigg| \\ B_0 & B_0 \end{array}$$

Classically, the dual fiber is expected to be H¹(L_q, U(1)) = { all flat U(1)-connections on L_q up to gauge equivalence. } ≅ U(1)ⁿ ≅ (S¹)ⁿ is also a torus. (because L_q is a torus)

Now, X₀[∨] can be regarded as a dual torus fibration ('T-duality')

Quantum correction and Family Floer - 1/3

The T-duality need to be modified by so-called '**quantum corrections**' **(q.c.)** which are given by counting

holomorphic disks in $\pi_2(X, L_q)$ for $q \in B_0$ (Lagrangian Floer theory)

Here we still require $q \in B_0$ above, L_q is still smooth, but such a holomorphic disk can get in touch with those singular fibers over $B \setminus B_0$.

So these q.c. may include info. outside the fibration, e.g. singular fibers e.g. (toric) divisors c.f. FOOO, cpt toric mfd (Maslov-two disks) ⇒ q.c. is necessary

Quantum correction and Family Floer - 2/3

Namely, we are gonna to study **Lagrangian Floer theory** for the family $(L_q)_{q \in B_0}$ of torus fibers *simultaneously*. This gives the name **Family Floer**.

- The Family Floer theory is invented by Fukaya in around 2000; later, Tu and Abouzaid made great progress.
- Roughly, FF predicts that the dual torus fiber of L_q, q ∈ B₀ is not

$$H^1(L_q, U(1)) \cong U(1)^n$$

but (possibly a subset of) a 'non-archimedean torus'

$$H^1(L_q, U_\Lambda) \cong U_\Lambda^n$$

where U_{Λ} (later) is the multiplicative group of the **Novikov field**

$$\Lambda := \left\{ \sum_{i=0}^{\infty} a_i T^{E_i} \mid a_i \in \mathbb{C}, E_i \nearrow + \infty \right\} \quad \begin{array}{l} \text{This is a non-archimedean} \\ \text{field, just like } \mathbb{C}((T)). \end{array}$$

Quantum correction and Family Floer - 3/3

Previous FF works more or less rely on tautological unobstructedness

Assumption: There is no holomorphic disk in $\pi_2(M, L_q)$ for all q.

Motivation # 1

Can we somehow drop or weaken this assumption? Because

(i) These disks are the 'quantum corrections' we need.

(ii) At least, Maslov-two disks \implies Landau-Ginzburg potential (FOOO)

Moreover, the expected mirror $X^{\vee} \equiv \bigsqcup_q H^1(L_q; U_{\Lambda})$ is just a **set** at first. It is a very delicate issue to put an 'analytic space' structure on X^{\vee} !

Motivation # 2

We aim to develop a **rigid analytic space*** structure from the ground up.

will see: A_{∞} -homotopy in Lag. Floer (A) \implies lsom. of rigid analytic (B)

Suppose we have a Lagrangian torus fibration $\pi: U \to B_0$ on an open subset U of a closed symplectic manifold (M, ω) . (e.g. compact toric)

Main Theorem

Assume Maslov indices of pseudo-holomorphic disks are non-negative. Then we can associate to (M, π) a triple $(M^{\vee}, W^{\vee}, \pi^{\vee})$ consisting of

- 1. a Λ -rigid analytic space M^{\vee} ; mirror space
- 2. a global function W^{\vee} ; Landau-Ginzburg potential
- 3. a projection $\pi^{\vee}: M^{\vee} \to B_0$ 'SYZ dual fibration'

unique up to isomorphism of rigid analytic spaces.

(Our mirror construction is independent of choices!)

• Kontsevich-Soibelman proposed to use non-archimedean geometry to study mirror symmetry. We justify this proposal in some sense.

Rigid analytic geometry: Review

• $\operatorname{val}: \sum_{i \geq 0} a_i T^{E_i} \in \Lambda \ (a_0 \neq 0) \mapsto E_0 \in \mathbb{R}; \text{ norm } \cdot = \exp(-\operatorname{val}());$		
\implies adic topology on Λ ; such a field is a non-archimedean field		
• mul. gp. $U_{\Lambda}=\{\mathrm{val}(z)=0\}=\{ z =1\};$ analogue of $U(1)\equiv S^1$		
• Nov. ring $\Lambda_0 := {\text{val} \ge 0}; \Lambda_+ := {\text{val} > 0}$ used to hold q.c. data		
• $U_{\Lambda} = \mathbb{C}^* \oplus \Lambda_+; \Lambda_0 = \mathbb{C} \oplus \Lambda_+.$	$[u] \neq 0 \in \pi_2(M,L); E(u) > 0$	
Algebraic/analytic geom. over $\ensuremath{\mathbb{C}}$	Rigid analytic geom. over Λ	
Polynomial alg. $R_n = \mathbb{C}[z_1, \ldots, z_n]$	Tate's algebra $T_n := \Lambda \langle z_1, \ldots, z_n angle$	
	$= \{f = \sum a_ u \mathbf{z}^ u \mid \mathrm{val}(a_ u) o 0\}$	
	$= \{f \mid f \text{ converges on unit ball } B^n_{\Lambda} \}$	
$\operatorname{Spec}(R_n)\cong\mathbb{C}^n$, affine space	$\operatorname{Sp}(T_n) \cong B^n_{\Lambda} = \{(z_i) \in \Lambda^n \mid z_i \leq 1\}$	
Affine scheme $\operatorname{Spec}(R_n/\mathfrak{a}) = V(\mathfrak{a})$	Affinoid space $\operatorname{Sp}(T_n/\mathfrak{a}) = V(\mathfrak{a})$	
Variety/scheme	Rigid analytic space/variety (Defn)	
Log : $(\mathbb{C}^*)^n \to \mathbb{R}^n$, $z_i \mapsto \log z_i $ - a torus fibration - fiber is topologically $T^n = U(1)^n$	trop : $(\Lambda^*)^n \to \mathbb{R}^n$, $z_i \mapsto \operatorname{val}(z_i)$ - 'a non-archimedean torus fibration' - fiber at 0 is our nonar. torus U_{Λ}^n	

Local chart of M^{\vee} - 1/6

Claim: $\pi^{\vee} : M^{\vee} \to B_0$ is locally **trop** : $(\Lambda^*)^n \to \mathbb{R}^n$, $z_i \mapsto \operatorname{val}(z_i)$.

Consider the so-called polytopal domain: (an affinoid space)

 $\operatorname{trop}^{-1}(\Delta) \equiv \operatorname{Sp} \Lambda \langle \Delta \rangle \qquad \Delta \subset \mathbb{R}^n$ a rational polyhedron

Here $\Lambda \langle \Delta \rangle$ is the so-called polyhedral affinoid algebra:

$$\Lambda \langle \Delta \rangle = \{ f = \sum_{\nu \in \mathbb{Z}^d} a_{\nu} \mathsf{z}^{\nu} \mid \underset{\text{for all } u \in \Delta}{\operatorname{val}(a_{\nu}) + \langle \nu, u \rangle \to \infty} \} \equiv \{ f \mid f \text{ converges on } \mathsf{trop}^{-1}(\Delta) \}$$

In our situation, the base B_0 locally looks like \mathbb{R}^n . It makes sense to define

$$\Lambda\langle\Delta,q
angle$$
 for $q\in B_0$ and a small *rational polyhedron* $\Delta\subset B_0$

 $GL(n,\mathbb{Z})$ preserves 'rational' condition. Think: $\Delta \subset \mathbb{R}^n$; q is like the origin.

Example: If
$$\Delta = \{q\}$$
 then $\operatorname{Sp} \Lambda \langle q, q \rangle \equiv \operatorname{trop}^{-1}(0) \equiv U_{\Lambda}^{n} \equiv H^{1}(L_{q}; U_{\Lambda}).$

Local chart of M^{\vee} - 2/6

Claim:

Our mirror space M^{\vee} is locally given by a closed analytic subvariety

$$V(\mathfrak{a}):=\mathrm{Sp}\,\left(\Lambda\langle\Delta,q
angle/\mathfrak{a}
ight)$$
 in the polytopal domain $\mathbf{trop}^{-1}(\Delta)$

cut out by the ideal \mathfrak{a} (defn later) of 'weak Maurer-Cartan equations' 'weak Maurer-Cartan equations'

• Following FOOO, we can associate to $L=L_q$ a filtered A_∞ algebra

$$\left(H^*_{dR}(L),\mathfrak{m}\right)$$
 $\mathfrak{m}_k=\sum_{\beta}T^{E(\beta)}\mathfrak{m}_{k,\beta};$

where $\beta \in \pi_2(M, L)$, $E(\beta) = \omega \cap \beta$ is the energy

- m_{k,β}: H*(L) ⊗····⊗ H*(L) → H*(L) is a map of degree 2 − k − μ(β) (counting holo disks in class β) m = (m_k) = (m_{k,β}) satisfies A_∞ eq
- Gromov's compactness $\implies \mathfrak{m}$ converges for adic topology on Λ .
- Use homological perturbation to obtain m (canonical model).

Definition of Maurer-Cartan equation (MC eq)

$$\sum_{\beta} \sum_{k} T^{\mathcal{E}(\beta)} \mathfrak{m}_{k,\beta}(b,\ldots,b) = 0;$$
 for $b \in H^1(L; \Lambda_+)$

There is an important property of \mathfrak{m} : for any $b \in H^1(L)$, we have

Divisor axioms

$$\sum_{\ell=0}^{k} \mathfrak{m}_{k+1,\beta}(x_1, \dots, x_{\ell-1}, b, x_\ell, \dots, x_k) = \partial\beta \cap b \cdot \mathfrak{m}_{k,\beta}(x_1, \dots, x_k)$$
$$\implies \mathfrak{m}_{k,\beta}(b, \dots, b) = \frac{(\partial\beta \cap b)^k}{k!} \mathfrak{m}_{0,\beta} \quad \text{using combinatorics}$$

By divisor axioms, MC eq can be transferred to (which we prefer)

$$\sum_{\beta} T^{E(\beta)} e^{\partial \beta \cap b} \mathfrak{m}_{0,\beta} = 0; \qquad b \in H^1(L; \Lambda_0), \ \partial \beta \in \pi_1(L) \cong \mathbb{Z}^n$$

Remark: This idea was used in FOOO's work on compact toric manifolds.

Local chart of M^{\vee} - 4/6

Idea: Forget about the original MC eq $\sum T^{E(\beta)}e^{\partial\beta\cap b}\mathfrak{m}_{0,\beta}$, and focus on:

MC formal power series(will not lose any information) $P = \sum_{\beta} T^{E(\beta)} Y^{\partial\beta} \mathfrak{m}_{0,\beta}.$ (a collection of series, $\mathfrak{m}_{0,\beta} \in H^*(L) \cong \mathbb{R}^N$)

• Fix a basis $(\theta_i) \subset H^1$, $Y^{\partial\beta} \longleftrightarrow Y_1^{\partial_1\beta} \cdots Y_n^{\partial_n\beta}$ with $\partial_i\beta = \partial\beta \cap \theta_i$.

• If we set
$$b = \sum_i x_i heta_i \ (x_i \in \Lambda_0)$$
 then $e^{\partial eta \cap b} = (e^{x_1})^{\partial_1 eta} \cdots (e^{x_n})^{\partial_n eta}$

 $\mathbf{y} = (y_i = e^{x_i})_{i=1}^n$ is a point in U_{Λ}^n ; Any point \mathbf{y} in U_{Λ}^n is in this form.

Point 1: The restriction function $P|_{U_{h}^{n}}$ 'recovers' the MC equation.

$$P(\mathbf{y}) = \sum T^{E(\beta)} y_1^{\partial_1 \beta} \cdots y_n^{\partial_n \beta} \mathfrak{m}_{0,\beta}$$

= $\sum T^{E(\beta)} e^{\partial \beta \cap b} \mathfrak{m}_{0,\beta}$
= $\sum T^{E(\beta)} \mathfrak{m}_{k,\beta}(b, \dots, b)$ (DA)

Define $U^n_{\Lambda} \subset Domain(P) \subset (\Lambda^*)^n$, the domain of convergence. Point 2: *P* converges on a bigger domain $\operatorname{trop}^{-1}(\Delta) \supset U_{\Lambda}^{n} \equiv \operatorname{trop}^{-1}(0)$.

Reverse isoperimetric inequality: $E(\beta) \ge cL(\partial\beta)$ (Groman-Solomon). Take $\Delta \ni 0$ where $0 \leftrightarrow q \in B_0$ s.t. diam $(\Delta) \le c \implies$ Point 2

will see: P contains info. of nearby Lag. fibers over Δ . (Fukaya's trick)

Moreover, there is an important 'rigidity' for the formal power series:

Point 3: Conversely, the function $P|_{U_A^n}$ determines the series P itself!

Let $f = \sum a_{\nu} z^{\nu}$ be a formal power series in $\Lambda[[z_1^{\pm}, \dots, z_n^{\pm}]]$. Then

Lemma X 'vanish center fiber \implies vanish everywhere' (not hard) If f vanishes on $U_{\Lambda}^{n} \cong \operatorname{trop}^{-1}(0)$, then $f \equiv 0$ is identically zero.

 $(later) \implies Wall \ crossing \ formula \implies Transition \ maps \ well-defined$

Local chart of M^{\vee} - 6/6

Notice that $\mathfrak{m}_{0,\beta} \in H^{2-\mu(\beta)}(L)$; we also assume $\mu(\beta) \ge 0$. So, consider: $P = \left(\sum_{\mu(\beta)=2} T^{E(\beta)} Y^{\partial\beta} \mathfrak{m}_{0,\beta}\right) + \left(\sum_{\mu(\beta)=0} T^{E(\beta)} Y^{\partial\beta} \mathfrak{m}_{0,\beta}\right)$

 $(\Delta) \longrightarrow W, q_{pq} \in \mathcal{H}(\Delta, q) = \mathcal{H}(\Delta)$

Definition: \mathfrak{a} = the ideal gen. by all Q_{pq} = 'the ideal of weak MC eqs'.

- (i) A local chart of the mirror space M^{\vee} is defined to be $V(\mathfrak{a}) := \operatorname{Sp} \left(\Lambda \langle \Delta, q \rangle / \mathfrak{a} \right) \subset \operatorname{trop}^{-1}(\Delta)$ 'zero locus of weak MC eqs'
- (ii) Moreover, this W can be viewed as a function on V(𝔅); it will be a local piece of the global LG potential W[∨].

Transition map - 1/5

will do: First find a homo. $\Lambda \langle \Delta, q \rangle \to \Lambda \langle \tilde{\Delta}, \tilde{q} \rangle$; then pass to the quotient

Transition map - 2/5

(I) Fukaya's trick

Choose $F \in Diff_0(M)$ s.t. $F(L) = \tilde{L}$. There is a natural identification:

$$\mathcal{M}(J, L; \beta) \cong \mathcal{M}(F_*J, \tilde{L}; \tilde{\beta})$$
$$\boxed{u \text{ is } J\text{-holomorphic}} \mapsto \boxed{F \circ u \text{ is } F_*J\text{-holomorphic}}$$

where $\beta \in \pi_2(M, L)$, $\tilde{\beta} \equiv F_*\beta \in \pi_2(M, \tilde{L})$, and $F_*J := dF \circ J \circ dF^{-1}$.

Fukaya's trick

The two A_{∞} algebras $\mathfrak{m}^{J,L}$ and $\mathfrak{m}^{F_*J,\tilde{L}}$ are closely related to each other.

- 'Counting numbers' are basically the same; only the energy is varied.
- Explicitly, $\begin{cases}
 \mathfrak{m}_{k,\tilde{\beta}}^{F_*J,\tilde{L}}(x_1,\ldots,x_k) = F^{-1*}\mathfrak{m}_{k,\beta}^{J,L}(F^*x_1,\ldots,F^*x_k) \\
 E(\tilde{\beta}) = E(\beta) + \langle \partial\beta, \tilde{q} - q \rangle E(\tilde{\beta}) = E(\beta) + \langle \partial\beta, \tilde{q} - q \rangle
 \end{cases}$

• Intuitively, may call $\mathfrak{m}^{F_*J,\widetilde{L}}$ the F-pushforward A_∞ algebra of $\mathfrak{m}^{J,L}$

Transition map - 3/5

- Think of $q \leftrightarrow 0$, $\tilde{q} \leftrightarrow c \in \mathbb{R}^n$. Recall $P = \sum T^{E(\beta)} Y^{\partial \beta} \mathfrak{m}_{0,\beta}^{J,L}$.
- 1. $P|_{U_{\Lambda}^{n}} \implies$ the MC eq of $\mathfrak{m}^{J,L}$ (said before; $U_{\Lambda}^{n} \equiv \operatorname{trop}^{-1}(0)$) 2. $P|_{\operatorname{trop}^{-1}(c)} \implies$ the MC eq of $\mathfrak{m}^{F_{*}J,\tilde{L}}$ (further using Fukaya's trick)

Using Fukaya's tricks, we justify our previous message:

P contains info. of nearby Lag. fibers (all L_c for $c \in \Delta$)

Recall: $Domain(P) \supset \operatorname{trop}^{-1}(\Delta) \supset U_{\Lambda}^{n}$ for small Δ (rev. iso. ineq.)

Why is Fukaya's trick useful? **Goal**: relate $V(\mathfrak{a})$ with $V(\tilde{\mathfrak{a}})$

First, we want to compare $\mathfrak{m}^{J,L}$ and $\mathfrak{m}^{J,\tilde{L}}$ for fixed J but different L, \tilde{L} . Now, only need to compare $\mathfrak{m}^{F_*J,\tilde{L}}$ and $\mathfrak{m}^{J,\tilde{L}}$ for varied J but the same \tilde{L} .

Transition map - 4/5

D p

To compare $\mathfrak{m}^{F_*J,\tilde{L}}$ and $\mathfrak{m}^{J,\tilde{L}}$, we take a path $\mathbf{J}: F_*J \leftrightarrow J$; \Longrightarrow (II) A_{∞} homotopy equivalence $\mathfrak{C}^F = (\mathfrak{C}^F_k) = (\mathfrak{C}^F_{k,\beta})$ a collection of op.

$$\mathfrak{C}^{F} \triangleq \mathfrak{C}^{F,\mathbf{J}} : \mathfrak{m}^{J,\widetilde{L}} \longrightarrow \mathfrak{m}^{F_{*}J,\widetilde{L}} \approx \mathfrak{m}^{J,L}$$

$$\mathfrak{C}^{F} \triangleq \mathfrak{C}^{F,\mathbf{J}} : \mathfrak{m}^{J,\widetilde{L}} \longrightarrow \mathfrak{m}^{F_{*}J,\widetilde{L}} \approx \mathfrak{m}^{J,L}$$

$$\mathfrak{C}^{F} \triangleq \mathfrak{C}^{F,\mathbf{J}} : \mathfrak{m}^{J,\widetilde{L}} \longrightarrow \mathfrak{m}^{F_{*}J,\widetilde{L}} \approx \mathfrak{m}^{J,L}$$

$$\mathfrak{its MC eq gives V(\widetilde{\mathfrak{a}})} \longrightarrow \mathfrak{m}^{F_{*}J,\widetilde{L}} \approx \mathfrak{m}^{J,L}$$

$$\mathfrak{its MC eq gives V(\widetilde{\mathfrak{a}})} \longrightarrow \mathfrak{m}^{F_{*}J,\widetilde{L}} \approx \mathfrak{m}^{J,L}$$

$$\mathfrak{its MC eq gives V(\mathfrak{a})} \longrightarrow \mathfrak{m}^{F_{*}J,\widetilde{L}} \approx \mathfrak{m}^{J,L}$$

$$\mathfrak{m}^{J,L} \longrightarrow \mathfrak{m}^{J,L} \longrightarrow \mathfrak{m}^{J,L} \approx \mathfrak{m}^{J,L}$$

$$\mathfrak{m}^{J,L} \longrightarrow \mathfrak{m}^{J,L} \approx \mathfrak{m}^{J,L} \times \mathfrak{m}^{J,L}$$

$$\mathfrak{m}^{J,L} \longrightarrow \mathfrak{m}^{J,L} \approx \mathfrak{m}^{J,L} \times \mathfrak{m}^{J,L} \times \mathfrak{m}^{J,L}$$

$$\mathfrak{m}^{J,L} \longrightarrow \mathfrak{m}^{J,L} \times \mathfrak{m}^{J,L} \times$$

Main Issue: mirror construction should **not** depend on choices But, $\phi^F : \Lambda \langle \Delta, q \rangle \to \Lambda \langle \tilde{\Delta}, \tilde{q} \rangle$ depends on choices !! e.g. *F* and **J**.

Fortunately, this doesn't matter for the following two **claims**: Don't forget: what we need is *not* ϕ^F *but* a quotient homomorphism:

Claim (A) ϕ^F can pass to the quotient $\Phi = [\phi^F] : \Lambda \langle \Delta, q \rangle / \mathfrak{a} \to \Lambda \langle \tilde{\Delta}, \tilde{q} \rangle / \tilde{\mathfrak{a}}$ Moreover, we will prove $\Phi(W) = \tilde{W}$ and a global LG is very possible.

Definition: This Φ defines our **transition map** $\Phi^* : V(\tilde{\mathfrak{a}}) \to V(\mathfrak{a})$.

Claim (B): The quotient Φ only depends on the homotopy class of \mathfrak{C}^F . \implies Our transition map Φ^* does **not** depend on choices!

We first explain Claim (A). It will be a result of our Wall Crossing Formula.

Claim (A) & Wall Crossing Formula - 1/3

For $\mathfrak{m} := \mathfrak{m}^{J,L}$ and $\tilde{\mathfrak{m}} := \mathfrak{m}^{J,\tilde{L}}$, we decompose their MC power series:

• $P = W \cdot \mathbf{1} + \sum Q_{pq} \theta_{pq}$ • $\tilde{P} = \tilde{W} \cdot \tilde{\mathbf{1}} + \sum \tilde{Q}_{pq} \tilde{\theta}_{pq}$ $\bullet \ {\bf 1}, {\bf \tilde 1} = {\tt generators} \ {\sf of} \ {\it H}^0$

•
$$\theta_{pq}, \tilde{\theta}_{pq} = \text{basis of } H^2$$

• $\mathfrak{a} = (Q_{pq}), \ \tilde{\mathfrak{a}} = (\tilde{Q}_{pq})$ are ideals of weak Maurer-Cartan eqs.

Wall Crossing Formula (the key to Claim (A)) $\phi^{F}(\langle \eta, P \rangle) = \langle F_{*}\eta, \tilde{\mathbf{1}} \rangle \tilde{W} + \sum R_{pq}^{F,\eta} \tilde{Q}_{pq}$

• Here
$$\eta \in H_*(L)$$
 and $R_{pq}^{F,\eta} = \sum_{\tilde{\beta}} T^{E(\tilde{\beta})} Y^{\partial \tilde{\beta}} \langle F_*\eta, \mathfrak{C}_{1,\tilde{\beta}}^F(\tilde{\theta}_{pq}) \rangle$.

•
$$\eta$$
 dual to $\theta_{pq} \implies \langle \eta, P \rangle = Q_{pq}, \ \langle F_*\eta, \tilde{\mathbf{1}} \rangle = 0 \implies \phi^F(\mathfrak{a}) \subset \tilde{\mathfrak{a}}$

•
$$\eta$$
 dual to $\mathbf{1} \implies \langle \eta, P \rangle = W$, $\langle F_*\eta, \mathbf{\tilde{1}} \rangle = 1 \implies \phi^F(W) \in \tilde{W} + \tilde{\mathfrak{a}}$

WCF \implies Claim (A) i.e. the quotient $\Phi = [\phi^F]$ exists and $\Phi(W) = \tilde{W}$.

Claim (A) & Wall Crossing Formula - 2/3

Now, it remains to prove the Wall Crossing Formula:

Strategy of proof ? Lemma X !

(Recall) If f vanishes on $U_{\Lambda}^{n} \cong \operatorname{trop}^{-1}(0)$, then $f \equiv 0$ is identically zero.

- 1. If we want to show an identity $f_1 \equiv f_2$ of formal power series in $\Lambda[[z_1^{\pm}, \dots, z_n^{\pm}]]$, then it suffices to show $f_1 = f_2$ holds restricting to U_{Λ}^n .
- 2. Moreover, recall the Novikov field enjoys the property that every $y \in U_{\Lambda}$ can be represented by $y = e^x$ for some $x \in \Lambda_0$.
- 3. Enough to show $f_1(e^{x_1}, \ldots, e^{x_n}) = f_2(e^{x_1}, \ldots, e^{x_n})$. Put $b = \sum x_i \theta_i$ $\implies e^{\partial \beta \cap b} \equiv (e^{x_1})^{\partial_1 \beta} \cdots (e^{x_n})^{\partial_n \beta} =: \mathbf{y}^{\partial \beta}$, where $\partial_i \beta = \partial \beta \cap \theta_i$
- 4. Apply Divisor Axioms backward; e.g. $\mathbf{y}^{\partial\beta}\mathfrak{C}^{\mathcal{F}}_{0,\beta} \rightsquigarrow \sum_{k} \mathfrak{C}^{\mathcal{F}}_{k,\beta}(b,\ldots,b)$
- 5. A_∞ structures in Lagrangian Floer join the game!

Example $P = \sum T^{E(\beta)} Y^{\partial \beta} \mathfrak{m}_{0,\beta} \xleftarrow{\text{Lemma X}} P|_{U^n_{\Lambda}} \xleftarrow{\text{Div.Axiom}} MC \text{ eq}$

Claim (A) & Wall Crossing Formula - 3/3

(recall)
$$\phi^{F} : Y^{\alpha} \mapsto T^{\langle \alpha, \tilde{q} - q \rangle} Y^{\tilde{\alpha}} \exp\langle \tilde{\alpha}, \sum T^{E(\beta)} Y^{\partial \beta} \mathfrak{C}_{0,\beta}^{F} \rangle$$

• $\alpha \in \pi_{1}(L) \iff \tilde{\alpha} := F_{*}\alpha \in \pi_{1}(\tilde{L}) \cong \mathbb{Z}^{n}$.
• **Observe**: Only Maslov-zero disks contribute to 'wall-crossing': because $\mathfrak{C}_{0,\beta}^{F} \in H^{1-\mu(\beta)}(\tilde{L})$; we also assume $\mu(\beta) \ge 0$.
Proof of WCF: Wall Crossing Formula $\Leftrightarrow A_{\infty}$ equation (DA & FT)
Let $\mathbf{y} = (e^{x_{1}}, \dots, e^{x_{n}}) \in U_{\Lambda}^{n}$ and $b = \sum x_{i}\theta_{i}$. It suffices to compute
 $\phi^{F}(\langle \eta, P \rangle)|_{Y=\mathbf{y}}$
 $= \phi^{F} (\sum \langle \eta, \mathfrak{m}_{0,\beta} \rangle T^{E(\beta)} Y^{\partial \beta}) |_{\mathbf{y}} = \sum \langle \eta, \mathfrak{m}_{0,\beta} \rangle T^{E(\beta)} \phi^{F}(Y^{\partial \beta})|_{\mathbf{y}}$
 $= \sum \langle \eta, \mathfrak{m}_{0,\beta} \rangle T^{E(\beta)} T^{\langle \partial \beta, \tilde{q} - q \rangle} T^{E(\beta)} T^{\langle \partial \beta, \tilde{q} - q \rangle} Y^{\partial \tilde{\beta}} Y^{\partial \tilde{\beta}} \exp\langle \partial \tilde{\beta}, \sum T^{E(\gamma)}$
 $= \sum \langle \eta, \mathfrak{m}_{0,\beta} \rangle T^{E(\tilde{\beta})} \exp(\partial \tilde{\beta} \cap b) \exp\langle \partial \tilde{\beta}, \sum T^{E(\gamma)} \mathfrak{C}_{k,\gamma}^{F}(b, \dots, b) \rangle$
Divisor Axiom of $\mathfrak{m} \Longrightarrow$ Things like $\mathfrak{m} (\mathfrak{C}^{F}(b \cdots) \cdots \mathfrak{C}^{F}(\cdots))$ will appear
Harg Yar (Story Brok Univers) Park Park Parket 20 2020

Claim (B) & A_{∞} homotopy theory

Now that Claim (A) is proved. It suffices to show Claim (B). Recall:

Claim (A) ϕ^F can pass to the quotient $\Phi = [\phi^F] : \Lambda \langle \Delta, q \rangle / \mathfrak{a} \to \Lambda \langle \tilde{\Delta}, \tilde{q} \rangle / \tilde{\mathfrak{a}}$ Moreover, we will prove $\Phi(W) = \tilde{W}$ and a global LG is very possible.

Claim (B): The quotient Φ only depends on the homotopy classhomotopy class of \mathfrak{C}^F .

 \implies Our transition map Φ^* also does **not** depend on choices!

Note: More precisely, we need to develop an improved homotopy theory of A_{∞} alg, which I call **ud-homotopy**, where **u**=unitality and **d**=divisor axiom.

There are some heavy homological algebra, but the ideas are similar to previous ones.

Claim (B) & A_∞ homotopy theory

To prove Claim (B), we further consider two aspects as follows:

(B-1) For different choices, say F & F', we claim the A_{∞} homomorphisms \mathfrak{C}^{F} and $\mathfrak{C}^{F'}$ are ud-homotopic to each other. (This is basically OK)

(B-2) We compare alg. homo. By their defining formulas, we can write

$$\phi^{F'}(Y^{\alpha}) = \phi^{F}(Y^{\alpha}) \cdot \exp\left\langle \alpha, \sum T^{E(\gamma)} Y^{\partial \gamma}(\mathfrak{C}^{F'}_{0,\gamma} - \mathfrak{C}^{F}_{0,\gamma}) \right\rangle \qquad \forall \alpha \in \pi_1 \cong \mathbb{Z}^n$$

It suffices to show (any $\alpha\text{-component of})$ the 'error term'

$$S(Y) := \sum T^{E(\gamma)} Y^{\gamma} (\mathfrak{C}^{F'}_{0,\gamma} - \mathfrak{C}^{F}_{0,\gamma})$$

is contained in the ideal $\tilde{\mathfrak{a}}$ of weak MC eqs. $\implies \Phi = [\phi^F] = [\phi^{F'}]$

Cocycle conditions use similar ideas: $\phi^{ik}(Y^{\alpha})$ v.s. $\phi^{ij} \circ \phi^{jk}(Y^{\alpha})$.

Claim (B) & A_{∞} homotopy theory

Sketch of proof of (B-2):

1. The homotopy condition means: \exists (\mathfrak{f}_s) and (\mathfrak{h}_s) for $s \in [0,1]$ s.t.

• $\mathfrak{f}_0 = \mathfrak{C}^F$ and $\mathfrak{f}_1 = \mathfrak{C}^{F'}$ • $\frac{d}{ds}\mathfrak{f}_s = \sum (-1)^* \mathfrak{h}_s (\cdots \tilde{\mathfrak{m}} \cdots) + \sum (-1)^* \mathfrak{m} (\mathfrak{f}_s \cdots \mathfrak{f}_s \ \mathfrak{h}_s \ \mathfrak{f}_s \cdots \mathfrak{f}_s)$

• The ud-homotopy further means f_s, h_s have some good properties.

2. The second bullet above allows us to make the comparison:

$$\mathfrak{C}^{F'} - \mathfrak{C}^F = \int_0^1 \frac{d}{ds} \mathfrak{f}_s \cdot ds$$

3. Let $\mathbf{y} = (e^{x_1}, \dots, e^{x_n}) \in U^n_{\Lambda}$. Using Lemma X again, we will get $S(Y) \triangleq \sum T^{E(\gamma)} Y^{\gamma} (\mathfrak{C}^{F'}_{0,\gamma} - \mathfrak{C}^{F}_{0,\gamma}) = \sum \lambda_{pq}(Y) \tilde{Q}_{pq}(Y)$

 $(\lambda_{pq} \text{ is in terms of } \mathfrak{h}_s) \qquad S(Y) \in \tilde{\mathfrak{a}} \implies \Phi = [\phi^F] = [\phi^{F'}]$

A_∞ algebra	A_∞ homomorphism	homotopy of A_∞ homo.
\downarrow	\downarrow	\downarrow
Maurer-Cartan eq	Wall Crossing Formula	'error term' $\in \mathfrak{a}$
JL.	JL	\downarrow
v	v	Transition map Φ^*
Local chart $V(\mathfrak{a})$	Transition map Φ^*	choice-independent
	well-defined	&
		Cocycle condition